## Lecture 36

## Andrei Antonenko

## April 27, 2005

## 1 Polling revisited

Let us revisit the polling problem. We poll n voters and record the fraction  $M_n$  of those polled who are in favor of a particular candidate. If p is the fraction of the entire voter population that supports this candidate, then

$$M_n = \frac{X_1 + \dots + X_n}{n},\tag{1}$$

where the  $X_i$  are independent Bernoulli random variables with parameter p. In particular,  $M_n$  has mean p and variance p(1-p)/n. By the normal approximation,  $X_1 + \cdots + X_n$  is approximately normal, and therefore  $M_n$  is also approximately normal.

We are interested in the probability  $P(|M_n - p| \ge \epsilon)$  that the polling error is larger than some desired accuracy  $\epsilon$ . Because of the symmetry of the normal PDF around the mean, we have

$$P(|M_n - p| \ge \epsilon) \approx 2P(M_n - p \ge \epsilon).$$

The variance p(1-p)/n of  $M_n - p$  depends on p and is therefore unknown. We note that the probability of a large deviation from the mean increases with the variance. Thus, we can obtain an upper bound on  $P(Mn - p \ge \epsilon)$  by assuming that  $M_n - p$  has the largest possible variance, namely, 1/4n. To calculate this upper bound, we evaluate the standardized value

$$z = \frac{\epsilon}{1/(2\sqrt{n})},$$

and use the normal approximation

$$P(M_n - p \ge \epsilon) \le 1 - \Phi(z) = 1 - \Phi(2\epsilon\sqrt{n}).$$

For instance, consider the case where n = 100 and  $\epsilon = 0.1$ . Assuming the worst-case variance, we obtain

$$P(|M_{100} - p| \ge 0.1) \approx 2P(M_n - p \ge 0.1)$$
  
$$\approx 2 - 2\Phi(2 \cdot 0.1 \cdot \sqrt{100}) = 2 - 2\Phi(2) = 2 - 2 \cdot 0.977 = 0.046.$$

This is much smaller (more accurate) than the estimate that was obtained using the Chebyshev inequality.

We now consider a reverse problem. How large a sample size n is needed if we wish our estimate  $M_n$  to be within 0.01 of p with probability at least 0.95?

Assuming again the worst possible variance, we are led to the condition

$$2 - 2\Phi(2 \cdot 0.01 \cdot \sqrt{n}) \le 0.05,$$

or

$$\Phi(2 \cdot 0.01 \cdot \sqrt{n}) \ge 0.975.$$

From the normal tables, we see that  $\Phi(1.96) = 0.975$ , which leads to

$$2 \cdot 0.01 \cdot \sqrt{n} \ge 1.96,$$

or

$$n \ge \frac{(1.96)^2}{4 \cdot (0.01)^2} = 9604.$$

This is significantly better than the sample size of 50,000 that we found using Chebyshev's inequality.