Lecture 36

Andrei Antonenko

April 27, 2005

1 Polling revisited

Let us revisit the polling problem. We poll n voters and record the fraction M_{n} of those polled who are in favor of a particular candidate. If p is the fraction of the entire voter population that supports this candidate, then

$$
\begin{equation*}
M_{n}=\frac{X_{1}+\cdots+X_{n}}{n} \tag{1}
\end{equation*}
$$

where the X_{i} are independent Bernoulli random variables with parameter p. In particular, M_{n} has mean p and variance $p(1-p) / n$. By the normal approximation, $X_{1}+\cdots+X_{n}$ is approximately normal, and therefore M_{n} is also approximately normal.

We are interested in the probability $P\left(\left|M_{n}-p\right| \geq \epsilon\right)$ that the polling error is larger than some desired accuracy ϵ. Because of the symmetry of the normal PDF around the mean, we have

$$
P\left(\left|M_{n}-p\right| \geq \epsilon\right) \approx 2 P\left(M_{n}-p \geq \epsilon\right)
$$

The variance $p(1-p) / n$ of $M_{n}-p$ depends on p and is therefore unknown. We note that the probability of a large deviation from the mean increases with the variance. Thus, we can obtain an upper bound on $P(M n-p \geq \epsilon)$ by assuming that $M_{n}-p$ has the largest possible variance, namely, $1 / 4 n$. To calculate this upper bound, we evaluate the standardized value

$$
z=\frac{\epsilon}{1 /(2 \sqrt{n})},
$$

and use the normal approximation

$$
P\left(M_{n}-p \geq \epsilon\right) \leq 1-\Phi(z)=1-\Phi(2 \epsilon \sqrt{n}) .
$$

For instance, consider the case where $n=100$ and $\epsilon=0.1$. Assuming the worst-case variance, we obtain

$$
\begin{aligned}
& P\left(\left|M_{100}-p\right| \geq 0.1\right) \approx 2 P\left(M_{n}-p \geq 0.1\right) \\
& \quad \approx 2-2 \Phi(2 \cdot 0.1 \cdot \sqrt{100})=2-2 \Phi(2)=2-2 \cdot 0.977=0.046
\end{aligned}
$$

This is much smaller (more accurate) than the estimate that was obtained using the Chebyshev inequality.

We now consider a reverse problem. How large a sample size n is needed if we wish our estimate M_{n} to be within 0.01 of p with probability at least 0.95 ?

Assuming again the worst possible variance, we are led to the condition

$$
2-2 \Phi(2 \cdot 0.01 \cdot \sqrt{n}) \leq 0.05
$$

or

$$
\Phi(2 \cdot 0.01 \cdot \sqrt{n}) \geq 0.975 .
$$

From the normal tables, we see that $\Phi(1.96)=0.975$, which leads to

$$
2 \cdot 0.01 \cdot \sqrt{n} \geq 1.96
$$

or

$$
n \geq \frac{(1.96)^{2}}{4 \cdot(0.01)^{2}}=9604
$$

This is significantly better than the sample size of 50,000 that we found using Chebyshev's inequality.

