
Lecture 35

Andrei Antonenko

April 25, 2005

1 Central Limit Theorem

According to the weak law of large numbers, the distribution of the sample mean Mn is increas-
ingly concentrated in the near vicinity of the true mean µ. In particular, its variance tends
to zero. On the other hand, the variance of the sum Sn = X1 + · · · + Xn = n ·Mn increases
to infinity, and the distribution of Sn cannot be said to converge to anything meaningful. An
intermediate view is obtained by considering the deviation Sn − nµ of Sn from its mean nµ,
and scaling it by a factor proportional to 1/

√
n. What is special about this particular scaling

is that it keeps the variance at a constant level. The central limit theorem asserts that the
distribution of this scaled random variable approaches a normal distribution.

More specifically, let X1, X2, . . . be a sequence of independent identically distributed random
variables with mean µ and variance σ2. We define

Zn =
Sn − nµ

σ
√

n
=

X1 + · · ·+ Xn − nµ

σ
√

n
. (1)

An easy calculation yields

E [Zn] =
E [X1 + · · ·+ Xn]− nµ

σ
√

n
= 0, (2)

and

var (Zn) =
var (X1 + · · ·+ Xn)

σ2n
=

var (X1) + · · ·+ var (Xn)

σ2n
=

nσ2

nσ2
= 1. (3)

Theorem 1.1 (Central Limit Theorem). Let X1, X2, . . . be a sequence of independent identi-
cally distributed random variables with common mean µ and variance σ2, and define

Zn =
X1 + · · ·+ Xn − nµ

σ
√

n
.

Then, the CDF of Zn converges to the standard normal CDF

Φ(z) =
1√
2π

∫ z

−∞
e−x2/2 dx,

in the sense that
lim

n→∞
P (Zn ≤ z) = Φ(z), for every z.
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The central limit theorem is surprisingly general. Besides independence, and the implicit as-
sumption that the mean and variance are well-defined and finite, it places no other requirement
on the distribution of the Xi, which could be discrete, continuous, or mixed random variables.
It is of tremendous importance for several reasons, both conceptual, as well as practical. On the
conceptual side, it indicates that the sum of a large number of independent random variables
is approximately normal. As such, it applies to many situations in which a random effect is
the sum of a large number of small but independent random factors. Noise in many natural
or engineered systems has this property. In a wide array of contexts, it has been found em-
pirically that the statistics of noise are well-described by normal distributions, and the central
limit theorem provides a convincing explanation for this phenomenon. On the practical side,
the central limit theorem eliminates the need for detailed probabilistic models and for tedious
manipulations of PMFs and PDFs. Rather, it allows the calculation of certain probabilities
by simply referring to the normal CDF table. Furthermore, these calculations only require the
knowledge of means and variances.

2 Approximations Based on the Central Limit Theorem

The central limit theorem allows us to calculate probabilities related to Zn as if Zn were normal.
Since normality is preserved under linear transformations, this is equivalent to treating Sn as
a normal random variable with mean nµ and variance nσ2.

Let Sn = X1 + · · · + Xn, where the Xi are independent identically distributed random
variables with mean µ and variance σ2. If n is large, the probability P (Sn ≤ c) can be
approximated by treating Sn as if it were normal, according to the following procedure.

1. Calculate the mean nµ and the variance nσ2 of Sn.

2. Calculate the normalized value

z =
c− nµ

σ
√

n
. (4)

3. Use the approximation
P (Sn ≤ c) ≈ Φ(z), (5)

where Φ(z) is available from standard normal CDF tables.

Example 2.1. We load on a plane 100 packages whose weights are independent random vari-
ables that are uniformly distributed between 5 and 50 pounds. What is the probability that
the total weight will exceed 3000 pounds? It is not easy to calculate the CDF of the total
weight and the desired probability, but an approximate answer can be quickly obtained using
the central limit theorem. We want to calculate P (S100 > 3000), where S100 is the sum of the
100 packages. The mean and the variance of the weight of a single package are

µ =
5 + 50

2
= 27.5, σ2 =

(50− 5)2

12
= 168.75,

based on the formulas for the mean and variance of the uniform PDF. We thus calculate the
normalized value

z =
3000− 100 · 27.5√

168.75 · 100
=

250

129.9
= 1.92,
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and use the standard normal tables to obtain the approximation

P (S100 ≤ 3000) ≈ Φ(1.92) = 0.9726.

Thus the desired probability is

P (S100 > 3000) = 1− P (S100 ≤ 3000) ≈ 1− 0.9726 = 0.0274.

Example 2.2. A machine processes parts, one at a time. The processing times of different parts
are independent random variables, uniformly distributed on [1, 5]. We wish to approximate the
probability that the number of parts processed within 320 time units is at least 100. Let Xi be
the processing time of the i-th part, and let S100 = X1 + · · ·+X100 be the total processing time
of the first 100 parts. The event that the number of parts processed within 320 time units is at
least 100 is the same as the event {S100 ≤ 320}, and we can now use a normal approximation
to the distribution of S100. Note that

µ = E [Xi] = 3 and σ2 = var (Xi) = 16/12 = 4/3.

We calculate the normalized value

z =
320− nµ

σ
√

n
=

320− 300√
100 · 4/3 = 1.73,

and use the approximation

P (S100 ≤ 320) ≈ Φ(1.73) = 0.9582.
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