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1 Weak Law of Large Numbers

The weak law of large numbers asserts that the sample mean of a large number of independent
identically distributed random variables is very close to the true mean, with high probability.

As in the introduction to this chapter, we consider a sequence X1, X2, . . . of independent
identically distributed random variables with mean µ and variance σ2, and define the sample
mean by

Mn =
X1 + · · ·+ Xn

n
. (1)

We have

E [Mn] =
E [X1] + · · ·+ E [Xn]

n
=

nµ

n
= µ, (2)

and, using independence,

var (Mn) =
var (X1 + · · ·+ Xn)

n2
=

var (X1) + · · ·+ var (Xn)

n2
=

nσ2

n2
=

σ2

n
. (3)

We apply Chebyshev’s inequality and obtain

P (|Mn − µ| ≥ ε) ≤ σ2

nε2
, (4)

for any ε > 0. We observe that for any fixed ε > 0, the right-hand side of this inequality goes
to zero as n increases. As a consequence, we obtain the weak law of large numbers, which is
stated below. It turns out that this law remains true even if the Xi have infinite variance, but
a much more elaborate argument is needed, which we omit. The only assumption needed is
that E [Xi] is well-defined and finite.

Theorem 1.1 (Weak Law of Large Numbers). Let X1, X2, . . . be independent identically dis-
tributed random variables with mean µ. For every ε > 0, we have

P (|Mn − µ| ≥ ε) = P

(∣∣∣∣
X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε

)
→ 0, as n →∞. (5)

The WLLN states that for large n, the “bulk” of the distribution of Mn is concentrated
near µ. That is, if we consider a positive length interval [µ − ε, µ + ε] around µ, then there is
high probability that Mn will fall in that interval; as n → ∞, this probability converges to 1.
Of course, if ε is very small, we may have to wait longer (i.e., need a larger value of n) before
we can assert that Mn is highly likely to fall in that interval.

1



Example 1.2 (Probabilities and Frequencies.). Consider an event A defined in the context of
some probabilistic experiment. Let p = P (A) be the probability of that event. We consider
n independent repetitions of the experiment, and let Mn be the fraction of time that event A
occurred; in this context, Mn is often called the empirical frequency of A. Note that

Mn =
X1 + · · ·+ Xn

n
,

where Xi is 1 whenever A occurs, and 0 otherwise; in particular, E [Xi] = p. The weak law
applies and shows that when n is large, the empirical frequency is most likely to be within ε
of p. Loosely speaking, this allows us to say that empirical frequencies are faithful estimates
of p. Alternatively, this is a step towards interpreting the probability p as the frequency of
occurrence of A.

Example 1.3 (Polling.). Let p be the fraction of voters who support a particular candidate
for office. We interview n “randomly selected” voters and record the fraction Mn of them that
support the candidate. We view Mn as our estimate of p and would like to investigate its
properties. We interpret “randomly selected” to mean that the n voters are chosen indepen-
dently and uniformly from the given population. Thus, the reply of each person interviewed
can be viewed as an independent Bernoulli trial Xi with success probability p and variance
σ2 = p(1− p). The Chebyshev inequality yields

P (|Mn − p| ≥ ε) ≤ p(1− p)

nε2
.

The true value of the parameter p is assumed to be unknown. On the other hand, it is easily
verified that

p(1− p) ≤ 1/4,

which yields

P (|Mn − p| ≥ ε) ≤ 1

4nε2
.

For example, if ε = 0.1 and n = 100, we obtain

P (|M100− p| ≥ 0.1) ≤ 1

4 · 100 · (0.1)2
= 0.25.

In words, with a sample size of n = 100, the probability that our estimate is wrong by more
than 0.1 is no larger than 0.25.

Suppose now that we impose some tight specifications on our poll. We would like to have
high confidence (probability at least 95%) that our estimate will be very accurate (within .01
of p). How many voters should be sampled? The only guarantee that we have at this point is
the inequality

P (|Mn − p| ≥ 0.01) ≤ 1

4n(0.01)2
.

We will be sure to satisfy the above specifications if we choose n large enough so that

1

4n(0.01)2
≤ 1− 0.95 = 0.05,

which yields n ≥ 50, 000. This choice of n has the specified properties but is actually fairly
conservative, because it is based on the rather loose Chebyshev inequality.
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