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1 Limit Theorems

Consider a sequence X1, X2, . . . of independent identically distributed random variables with
mean µ and variance σ2. Let

Sn = X1 + · · ·+ Xn (1)

be the sum of the first n of them. Limit theorems are mostly concerned with the properties of
Sn and related random variables, as n becomes very large. We have:

E [Sn] = E [X1] + · · ·+ E [Xn] = nµ. (2)

Moreover, because of independence, we have

var (Sn) = var (X1) + · · ·+ var (Xn) = nσ2. (3)

Thus, the distribution of Sn spreads out as n increases, and does not have a meaningful limit.
The situation is different if we consider the sample mean

Mn =
X1 + · · ·+ Xn

n
=

Sn

n
. (4)

A quick calculation yields

E [Mn] = µ, var (Mn) = var

(
Sn

n

)
=

1

n2
· nσ2 =

σ2

n
. (5)

In particular, the variance of Mn decreases to zero as n increases, and the bulk of its distribution
must be very close to the mean µ. This phenomenon is the subject of certain laws of large
numbers, which generally assert that the sample mean Mn (a random variable) converges to
the true mean µ (a number), in a precise sense. These laws provide a mathematical basis
for the loose interpretation of an expectation E [X] = µ as the average of a large number of
independent samples drawn from the distribution of X. We will also consider a quantity which
is intermediate between Sn and Mn. We first subtract nµ from Sn, to obtain the zero-mean
random variable Sn − nµ and then divide by σ

√
n, to obtain

Zn =
Sn − nµ

σ
√

n
. (6)

We have:

E [Zn] =
E [Sn]− nµ

σ
√

n
= 0 (7)
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and

var (Zn) = var

(
Sn − nµ

σ
√

n

)
=

1

σ2 · n · var (Sn) =
1

σ2 · n · nσ2 = 1. (8)

Since the mean and the variance of Zn remain unchanged as n increases, its distribution neither
spreads, nor shrinks to a point. The central limit theorem is concerned with the asymptotic
shape of the distribution of Zn and asserts that it becomes the standard normal distribution.
Limit theorems are useful for several reasons:

(a) Conceptually, they provide an interpretation of expectations (as well as probabilities) in
terms of a long sequence of identical independent experiments.

(b) They allow for an approximate analysis of the properties of random variables such as Sn.
This is to be contrasted with an exact analysis which would require a formula for the PMF
or PDF of Sn, a complicated and tedious task when n is large.

2 Inequalities

2.1 Markov Inequality

If X is a nonnegative random variable, than the following inequality holds:

P (X ≥ a) ≤ E [x]

a
for all a ≥ 0. (9)

This inequality is called Markov inequality. The meaning of the Markov inequality is that
the probability that the random variable will take the value far from it’s mean is small.

Proof. Let’s fix a positive number a and consider the random variable Ya, defined as follows:

Ya =

{
0, if X < a
a, if X ≥ a.

We see that always Ya ≤ X, and therefore

E [Ya] ≤ E [X] .

But
E [Ya] = 0 · P (Ya = 0) + a · P (Ya = a) = a · P (X ≥ a),

and therefore
a · P (X ≥ a) ≤ E [X] ,

from where we get Markov inequality by dividing both parts by a.

Example 2.1. Let X be uniformly distributed on the interval [0, 4] and note that E [X] = 2.
Then, the Markov inequality asserts that

P (X ≥ 2) ≤ 2

2
= 1, P (X ≥ 3) ≤ 2

3
= 0.67, P (X ≥ 4) ≤ 2

4
= 0.5.

By comparing with the exact probabilities

P (X ≥ 2) = 0.5, P (X ≥ 3) = 0.25, P (X ≥ 4) = 0,

we see that the bounds provided by the Markov inequality can be quite loose.
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2.2 Chebyshev’s Inequality

If X is a random variable with mean µ and variance σ2, then

P (|X − µ| ≥ c) ≤ σ2

c2
, for all c > 0. (10)

This inequality is called Chebyshev’s Inequality.
Loosely speaking, asserts that if the variance of a random variable is small, then the prob-

ability that it takes a value far from its mean is also small.

Proof. To justify the Chebyshev inequality, we consider the nonnegative random variable (X−
µ)2 and apply the Markov inequality with a = c2. We obtain

P ((X − µ)2 ≥ c2) ≤ E [X − µ]2

c2
=

σ2

c2
.

The derivation is completed by observing that the event (X −µ)2 ≥ c2 is identical to the event
|X − µ| ≥ c and

P (|X − µ| ≥ c) = P ((X − µ)2 ≥ c2) ≤ σ2

c2
.

Example 2.2. As in the previous example, let X be uniformly distributed on [0, 4]. Let us use
the Chebyshev inequality to bound the probability that |X−2| ≥ 1. We have σ2 = 16/12 = 4/3,
and

P (|X − 2| ≥ 1) ≤ 4

3
,

which is not particularly informative.

Example 2.3. For another example, let X be exponentially distributed with parameter λ = 1,
so that E [X] = var (X) = 1. For c > 1, using Chebyshevs inequality, we obtain

P (X ≥ c) = P (X − 1 ≥ c− 1) ≤ P (|X − 1| ≥ c− 1) ≤ 1

(c− 1)2
.

This is again conservative compared to the exact answer

P (X ≥ c) = e−c.
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