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1 Frequency interpretations

The steady state probabilities πi’s can be viewed as time frequencies of being in certain states.
For instance, in the example from previous lecture about the machine, which can be either
working or broken, we had:

π1 =
r

b + r
, π2 =

b

b + r
.

That means that π1 fraction of the time the machine will be working, and π2 fraction of the
time, the machine will be broken.

2 Birth-death processes

Now we will draw our attention to a special case of Markov chains, in which the states are
ordered, and the transitions are possible only to the neighboring states. Strictly speaking, we
have:

bi = P (Xn+1 = i + 1|Xn = i) (1)

di = P (Xn+1 = i− 1|Xn = i) (2)

which are called birth and death probabilities. Moreover, we have, that the probability of
staying in the same state is

pii = 1− bi − di. (3)

Graphically, this Markov chain can be represented as follows:
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As we see, the probabilities bi represent the situation, when the number of the state increases
(birth), and the probabilities di represent the situation when the number of the state decreases
(death).

For birth-death Markov chains the balance equations have the following nice form:

πibi = πi+1di+1, i = 0, . . . , m− 1. (4)
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Using these balance equations, we can see that

πi = π0
b0b1 . . . bi−1

d1d2 . . . di

, i = 1, . . . , m. (5)

Together with normalization equation

π0 + π1 + · · ·+ πm = 1 (6)

that allows us to find all πi’s.

Example 2.1 (Random Walk with Reflecting Barriers). A person walks along a straight line
and, at each time period, takes a step to the right with probability b, and a step to the left
with probability 1 − b. The person starts in one of the positions 1, 2, . . . ,m, but if he reaches
position 0 (or position m + 1), his step is instantly reflected back to position 1 (or position m,
respectively). Equivalently, we may assume that when the person is in positions 1 or m, he will
stay in that position with corresponding probability 1− b and b, respectively.

We introduce a Markov chain model whose states are the positions 1, . . . , m. The transition
probability graph of the chain is given below:
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The balance equations are

πib = πi+1(1− b), i = 0, . . . , m− 1.

Now, denoting

ρ =
b

1− b

we have
πi = ρi−1π1, i = 1, . . . ,m.

Using the normalization equation, we get:

π1(1 + ρ + · · ·+ ρm−1) = 1,

which leads to

πi =
ρi−1

1 + ρ + · · ·+ ρm−1
, i = 1, . . . , m

Notice that in case ρ = 1, we have

πi =
1

m
, i = 1, . . . , m.

Example 2.2 (Birth-Death Markov Chains Queueing). Packets arrive at a node of a commu-
nication network, where they are stored in a buffer and then transmitted. The storage capacity
of the buffer is m: if m packets are already present, any newly arriving packets are discarded.
We discretize time in very small periods, and we assume that in each period, at most one event
can happen that can change the number of packets stored in the node (an arrival of a new
packet or a completion of the transmission of an existing packet). In particular, we assume
that at each period, exactly one of the following occurs:
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(a) one new packet arrives; this happens with a given probability b > 0;

(b) one existing packet completes transmission; this happens with a given probability d > 0 if
there is at least one packet in the node, and with probability 0 otherwise;

(c) no new packet arrives and no existing packet completes transmission; this happens with a
probability 1− b− d if there is at least one packet in the node, and with probability 1− b
otherwise.

The graph for the problem is given in the next picture:
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The balance equations are

πib = πi+1d, i = 0, . . . , m− 1.

If we define

ρ =
b

d
,

we have πi+1 = ρπi, and πi = ρiπ0 for all i. Using normalization equation 1 = π0 + · · · + πm,
we have:

π0(1 + ρ + ρ2 + · · ·+ ρm) = 1,

and therefore,

π0 =





1− ρ

1− ρm+1
, ρ 6= 1,

1

m + 1
, ρ = 1.

This leads to the following steady state probabilities:

πi =





ρi(1− ρ)

1− ρm+1
, ρ 6= 1,

1

m + 1
, ρ = 1.
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