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1 Classification of states

In the previous sections we defined Markov chains and started with the state classification. The
definition from the previous section was the following:

Definition 1.1. The state i is called recurrent if for all states j, which are accessible from
it, i is also accessible from j. All states which are not recurrent are called transient.

In different words, the state is recurrent is there is always a non-zero probability of returning
to it, no matter how the process leaves the state. The state is transient if there is a way to
leave this state, such that we will never get back to it again. Please see the example in the
previous lecture.

If i is a recurrent state, the set of states A(i) that are accessible from i form a recurrent
class, meaning that states in A(i) are all accessible from each other, and no state outside A(i)
is accessible from them (we never leave the class once we are in it). Moreover, it can be seen
that at least one recurrent state must be accessible from any given transient state. This is
intuitively evident. It follows that there must exist at least one recurrent state, and hence at
least one class. Thus, we reach the following conclusion about the decomposition of the Markov
chain:

• A Markov chain can be decomposed into one or more recurrent classes, plus possibly some
transient states.

• A recurrent state is accessible from all states in its class, but is not accessible from
recurrent states in other classes.

• A transient state is not accessible from any recurrent state.

• At least one, possibly more, recurrent states are accessible from a given transient state.

In the following pictures I show the decomposition of the Markov chain into recurrent classes.
The classes are shown in grey. On the first picture, the whole chain form one class – from any
state we can get to any other state with non-zero probability.
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On the second picture states 1 and 2 form a recurrent class – as soon as we are in one of
them, we will always be bound to stay in either 1 or 2. State 3 is a transient state – once we
leave it, we never get back.
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On the next picture, there are two recurrent classes: state 1 is the 1st recurrent class, and
the other recurrent class is formed by the state 3 and 4. The state 3 is transient.
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2 Periodicity

One more characterization of a recurrent class is of special interest, and relates to the presence
or absence of a certain periodic pattern in the times that a state is visited. In particular, a
recurrent class is said to be periodic if its states can be grouped in d > 1 disjoint subsets
S1, . . . , Sd so that all transitions from one subset lead to the next subset. The example of the
periodic class is given in the next picture. There are 3 classes S1, S2, and S3, and we can see
that from the class S1 we can only get to class S2, from the class S2 we can only get to the
class S3, and from the class S3 we can only get to class S1.
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Recurrent classes without this property are called aperiodic.

3 Steady-state behavior

In Markov chain models, we are often interested in long-term state occupancy behavior, that
is, in the n-step transition probabilities rij(n) when n is very large. In the previous examples
we saw that the rij(n) may converge to steady-state values that are independent of the initial
state, so to what extent is this behavior typical?

If there are two or more classes of recurrent states, it is clear that the limiting values of the
rij(n) must depend on the initial state (visiting j far into the future will depend on whether j is
in the same class as the initial state i). We will, therefore, restrict attention to chains involving
a single recurrent class, plus possibly some transient states. Moreover, we will assume that the
class is aperiodic.

We now assert that for every state j, the n-step transition probabilities rij(n) approach a
limiting value that is independent of the initial state i. This limiting value, denoted by πj, has
the following interpretation:

πj ≈ P (Xn = j), when n is large, (1)

and is called steady-state probability of state j.
The following theorem is the main fact about steady-state probabilities:

Theorem 3.1 ( Steady-State Convergence Theorem). Consider a Markov chain with a single
recurrent class, which is aperiodic. Then, the states j are associated with steady-state probabil-
ities πj that have the following properties.

(a) limn→∞ rij(n) = πj, for all i, j.

(b) The πj’s are the unique solution of the system of equations below:

πj =
m∑

k=1

πkpkj, j = 1, . . . ,m (2)

1 =
m∑

k=1

πk. (3)
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In the matrix form, the first m equations of the system to determine πj’s can be written in
the following way:

(π1, π2, . . . , πm) = (π1, π2, . . . , πm)




p11 p12 . . . p1m

p21 p22 . . . p2m

. . . . . . . . . . . . . . . . . . . .
pm1 pm2 . . . pmm


 (4)

These equations are called balance equations.

Example 3.2. Let’s consider the Markov chain with the following transition probability matrix
P :

P =

(
0.8 0.2
0.6 0.4

)

The equations to determine π1 and π2 are the following:

(π1, π2) = (π1, π2)

(
0.8 0.2
0.6 0.4

)

1 = π1 + π2,

or

π1 = 0.8 · π1 + 0.6 · π2

π2 = 0.2 · π1 + 0.4 · π2

1 = π1 + π2.

Solving this system, we can find that π1 = 0.75 and π2 = 0.25. Therefore, the probability of
being in state 1 after sufficiently large number of steps is equal to 0.75, and the probability of
being in state 2 after sufficiently large number of steps is equal to 0.25.

Example 3.3. An absent-minded professor has two umbrellas that she uses when commuting
from home to office and back. If it rains and an umbrella is available in her location, she takes
it. If it is not raining, she always forgets to take an umbrella. Suppose that it rains with
probability p each time she commutes, independently of other times. What is the steady-state
probability that she gets wet on a given day?

We model this problem using a Markov chain with the following states:

State i: i umbrellas are available at her current location, i = 0, 1, 2.

The transition probability matrix is the following:

P =




0 0 1
0 1− p p

1− p p 0




The balance equations for this problem are the following:

π0 = (1− p)π2

π1 = (1− p)π1 + pπ2

π2 = π0 + pπ1.
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From the second equation, we obtain pi1 = π2, which together with the first equation π0 =
(1− p)π2 and the normalization equation π0 + π1 + π2 = 1, yields

π0 =
1− p

3− p
, π1 =

1

3− p
, π2 =

1

3− p
.

According to the steady-state convergence theorem, the steady-state probability that the pro-
fessor finds herself in a place without an umbrella is π0. The steady-state probability that she
gets wet is π0 times the probability of rain p.

Example 3.4. A machine can be either working or broken down on a given day. If it is
working, it will break down in the next day with probability b, and will continue working with
probability 1 − b. If it breaks down on a given day, it will be repaired and be working in the
next day with probability r, and will continue to be broken down with probability 1− r. What
is the steady-state probability that the machine is working on a given day?

We introduce a Markov chain with the following two states:

State 1: Machine is working
State 2: Machine is broken down.

The transition probability matrix is

P =

(
1− b b

r 1− r

)

This Markov chain has a single recurrent class that is aperiodic (assuming 0 ¡ b ¡ 1 and 0 ¡ r ¡
1), and from the balance equations, we obtain

π1 = (1− b)π1 + rπ2, π2 = bπ1 + (1− r)π2,

or
bπ1 = rπ2.

This equation together with the normalization equation π1 + π2 = 1, yields the steady-state
probabilities

π1 =
r

b + r
, π2 =

b

b + r
.
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