Lecture 20

Andrei Antonenko

March 11, 2005

1 Conditional variance as a random variable

The conditional variance can be defined in the similar way as conditional expectation:

$$
\begin{equation*}
\operatorname{var}(X \mid Y=y)=\mathbf{E}\left[(X-\mathbf{E}[X \mid Y=y])^{2} \mid Y=y\right] \tag{1}
\end{equation*}
$$

The following formula is the analog of the law of iterated expectations and called a law of conditional variances:

$$
\begin{equation*}
\operatorname{var}(X)=\mathbf{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathbf{E}[X \mid Y]) . \tag{2}
\end{equation*}
$$

Proof. We have:

$$
X-\mathbf{E}[X]=(X-\mathbf{E}[X \mid Y])+(\mathbf{E}[X \mid Y]-\mathbf{E}[X]) .
$$

Squaring both parts, and taking expectations, we have:

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& =\mathbf{E}\left[(X-\mathbf{E}[X \mid Y])^{2}\right]+\mathbf{E}\left[(\mathbf{E}[X \mid Y]-\mathbf{E}[X])^{2}\right] \\
& +2 \mathbf{E}[(X-\mathbf{E}[X \mid Y])(\mathbf{E}[X \mid Y]-\mathbf{E}[X])]
\end{aligned}
$$

Using the law of iterated expectations, the first term in the right-hand side of the above equation can be written as

$$
\mathbf{E}\left[\mathbf{E}\left[(X-\mathbf{E}[X \mid Y])^{2} \mid Y\right]\right]=\mathbf{E}[\operatorname{var}(X \mid Y)] .
$$

The second term is equal to $\operatorname{var}(\mathbf{E}[X \mid Y])$ since $\mathbf{E}[X]$ is the expectation of $\mathbf{E}[X \mid Y]$. Finally, the third term is zero, as we now show. Indeed, if we define $h(Y)=2(\mathbf{E}[X \mid Y]-\mathbf{E}[X])$, the third term is:

$$
\begin{aligned}
\mathbf{E}[(X-\mathbf{E}[X \mid Y]) h(Y)] & =\mathbf{E}[X h(Y)]-\mathbf{E}[\mathbf{E}[X \mid Y] h(Y)] \\
& =\mathbf{E}[X h(Y)]-\mathbf{E}[\mathbf{E}[X h(Y) \mid Y]] \\
& =\mathbf{E}[X h(Y)]-\mathbf{E}[X h(Y)] \\
& =0 .
\end{aligned}
$$

Now let's look at the examples.
Example 1.1. Recall the stick example from the previous lecture. We found out that

$$
\mathbf{E}[X \mid Y]=\frac{Y}{2}
$$

and Y is a uniform random variable of $[0, l]$, therefore $\operatorname{var}(Y)=l^{2} / 12$. Now we have:

$$
\operatorname{var}(\mathbf{E}[X \mid Y])=\operatorname{var}\left(\frac{Y}{2}\right)=\frac{1}{4} \operatorname{var}(Y)=\frac{l^{2}}{48}
$$

Also, X is uniformly distributed on $[0, Y]$, and therefore,

$$
\operatorname{var}(X \mid Y)=\frac{Y^{2}}{12}
$$

Moreover,

$$
\mathbf{E}[\operatorname{var}(X \mid Y)]=\mathbf{E}\left[\frac{Y^{2}}{12}\right]=\frac{1}{12} \int_{0}^{l} y^{2} \frac{1}{l} d y=\left.\frac{1}{12} \cdot \frac{1}{3 l} y^{3}\right|_{0} ^{l}=\frac{l^{2}}{36}
$$

Now, using the law of conditional variances,

$$
\operatorname{var}(X)=\frac{l^{2}}{48}+\frac{l^{2}}{36}=\frac{7 l^{2}}{144}
$$

Example 1.2. Let X be the random variable with PDF

$$
f_{X}(x)= \begin{cases}1 / 3, & 0 \leq x \leq 1 \\ 2 / 3, & 1<x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

Now, let's Y be the random variable such that

$$
Y= \begin{cases}1, & x \leq 1 \\ 2, & x \geq 1\end{cases}
$$

Now, if Y is equal to 1 (which happens with probability $1 / 3$) X is uniform on $[0,1]$, and if $Y=2$ (which happens with probability $2 / 3$) X is uniform on $[1,2]$. Therefore,

$$
\mathbf{E}[X \mid Y]= \begin{cases}1 / 2 & \text { with probability } 1 / 3 \\ 3 / 2 & \text { with probability } 2 / 3\end{cases}
$$

From here,

$$
\begin{aligned}
\mathbf{E}[\mathbf{E}[X \mid Y]] & =\frac{1}{2} \times \frac{1}{3}+\frac{3}{2} \times \frac{2}{3}=\frac{7}{6} \\
\mathbf{E}[\mathbf{E}[X \mid Y]] & =\left(\frac{1}{2}\right)^{2} \times \frac{1}{3}+\left(\frac{3}{2}\right)^{2} \times \frac{2}{3}=\frac{19}{12} \\
\operatorname{var}(\mathbf{E}[X \mid Y]) & =\frac{19}{12}-\left(\frac{7}{6}\right)^{2}=\frac{2}{9} .
\end{aligned}
$$

Now we have:

$$
\operatorname{var}(X \mid Y=y)=\frac{1}{12} \quad \text { for any } y
$$

Therefore,

$$
\mathbf{E}[\operatorname{var}(X \mid Y)]=\frac{1}{12} .
$$

Finally,

$$
\operatorname{var}(X)=\mathbf{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathbf{E}[X \mid Y])=\frac{1}{12}+\frac{2}{9}=\frac{11}{36} .
$$

2 Sum of random number of random variables

Let's assume that N is a discrete random variable, which takes only nonnegative integer values. Let X_{1}, X_{2}, \ldots be random variables. Assume that all above mentioned random variables are independent. Suppose that random variable N took some value. We want to find the characteristics of the sum of N random variables Y :

$$
Y=X_{1}+X_{2}+\cdots+X_{N}
$$

Let's notice that substituting N by its expectation does not give us correct results, as we will demonstrate in the next example.

Example 2.1. Assume that X_{i} are uniform random variables on $[0,1]$, and N takes values 1 or 3 with equal probabilities $1 / 2$. Now, we can notice that

$$
\sum_{i=1}^{N} X_{i}=X_{1}+\cdots+X_{N} \in[0,3]
$$

but if we take the expectation of N, which is $\mathbf{E}[N]=2$, we will have:

$$
\sum_{i=1}^{\mathbf{E}[N]} X_{i}=X_{1}+X_{2} \in[0,2] .
$$

Therefore, therefore the distribution of the sum of N random variables is not equal to the distribution of the sum of $\mathbf{E}[N]$ random variables.

Now, let's assume that all X_{i} 's have the same expectation μ and the same variance σ^{2} (they need not necessarily be normal!):

$$
\begin{equation*}
\mathbf{E}\left[X_{i}\right]=\mu, \quad \operatorname{var}\left(X_{i}\right)=\sigma^{2} \quad \forall i \tag{3}
\end{equation*}
$$

We can compute the expectation of $Y=X_{1}+\cdots+X_{N}$ conditioned on the value of $N=n$:

$$
\begin{array}{rlr}
\mathbf{E}[Y \mid N=n] & =\mathbf{E}\left[X_{1}+X_{2}+\cdots+X_{N} \mid N=n\right] \\
& =\mathbf{E}\left[X_{1}+X_{2}+\cdots+X_{n} \mid N=n\right] \\
& =\mathbf{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right] \quad \text { because } X_{i} \text { 's and } N \text { are independent } \\
& =\mathbf{E}\left[X_{1}\right]+\mathbf{E}\left[X_{2}\right]+\cdots+\mathbf{E}\left[X_{n}\right] & \\
& =n \mu . &
\end{array}
$$

Therefore,

$$
\mathbf{E}[Y \mid N]=N \mu .
$$

Now, we can use the law of iterated expectations

$$
\begin{equation*}
\mathbf{E}[\mathbf{E}[Y \mid N]]=\mathbf{E}[Y] . \tag{4}
\end{equation*}
$$

We have:

$$
\begin{aligned}
\mathbf{E}[Y] & =\mathbf{E}[\mathbf{E}[Y \mid N]] \\
& =\mathbf{E}[N \mu] \\
& =\mu \mathbf{E}[N] \\
& =\mathbf{E}\left[X_{i}\right] \mathbf{E}[N] .
\end{aligned}
$$

Therefore, the formula for the expectation of the random number N of identically distributed random variables $X_{i} Y=X_{1}+\cdots+X_{N}$ is

$$
\begin{equation*}
\mathbf{E}[Y]=\mathbf{E}\left[X_{i}\right] \mathbf{E}[N] . \tag{5}
\end{equation*}
$$

Now, let's find the formula for the variance. Again, conditioning on the value of N, we have:

$$
\begin{aligned}
\operatorname{var}(Y \mid N=n) & =\operatorname{var}\left(X_{1}+X_{2}+\cdots+X_{N} \mid N=n\right) \\
& =\operatorname{var}\left(X_{1}+X_{2}+\cdots+X_{n} \mid N=n\right) \\
& =\operatorname{var}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \\
& =n \sigma^{2},
\end{aligned}
$$

and therefore,

$$
\operatorname{var}(Y \mid N)=N \sigma^{2}
$$

Now using the formula for the variance

$$
\operatorname{var}(Y)=\mathbf{E}[\operatorname{var}(Y \mid N)]+\operatorname{var}(\mathbf{E}[Y \mid N]),
$$

we have:

$$
\begin{aligned}
\operatorname{var}(Y) & =\mathbf{E}[\operatorname{var}(Y \mid N)]+\operatorname{var}(\mathbf{E}[Y \mid N]) \\
& =\mathbf{E}\left[N \sigma^{2}\right]+\operatorname{var}(N \mu) \\
& =\sigma^{2} \mathbf{E}[N]+\mu^{2} \operatorname{var}(N) \\
& =\mathbf{E}[N] \operatorname{var}\left(X_{i}\right)+\mathbf{E}\left[X_{i}\right]^{2} \operatorname{var}(N) .
\end{aligned}
$$

So, the final formula is

$$
\begin{equation*}
\operatorname{var}(Y)=\mathbf{E}[N] \operatorname{var}\left(X_{i}\right)+\mathbf{E}\left[X_{i}\right]^{2} \operatorname{var}(N) . \tag{6}
\end{equation*}
$$

Now let's consider some applications of this theory.
Example 2.2. Assume in the village there are 3 gas stations, and each of them is opened with probability $1 / 3$ independent of the others. Assume that the amount of gas in each of them is uniformly distributed from 0 to 1000 gallons. What is the expectation of the total amount of available gas? What is its variance?

The random variable N equal to the number of open gas stations has the following PMF:

$$
p_{N}(n)= \begin{cases}(1 / 2)^{3}=1 / 8, & n=0 \\ \binom{3}{1}(1 / 2)(1 / 2)^{2}=3 / 8, & n=1 \\ \binom{3}{2}(1 / 2)^{2}(1 / 2)=3 / 8, & n=2 \\ (1 / 2)^{3}=1 / 8, & n=3\end{cases}
$$

Therefore,

$$
\begin{aligned}
\mathbf{E}[N] & =0 \frac{1}{8}+1 \frac{3}{8}+2 \frac{3}{8}+3 \frac{1}{8}=\frac{3}{2} \\
\mathbf{E}\left[N^{2}\right] & =0^{2} \frac{1}{8}+1^{2} \frac{3}{8}+2^{2} \frac{3}{8}+3^{2} \frac{1}{8}=3 \\
\operatorname{var}(N) & =\mathbf{E}\left[N^{2}\right]-(\mathbf{E}[N])^{2}=3-\left(\frac{3}{2}\right)^{2}=\frac{3}{4} .
\end{aligned}
$$

Now, let X_{i} be the amount of gas available on i-th gas station. Since X_{i} is uniform on $[0,1000]$, we have:

$$
\begin{aligned}
\mathbf{E}\left[X_{i}\right] & =\frac{1000}{2}=500 \\
\operatorname{var}\left(X_{i}\right) & =\frac{1000^{2}}{12}
\end{aligned}
$$

Now, let $Y=X_{1}+\cdots+X_{N}$ - amount of available gas. We have:

$$
\begin{aligned}
\mathbf{E}[Y] & =\mathbf{E}[N] \mathbf{E}\left[X_{i}\right]=\frac{3}{2} \times 500=750 \\
\operatorname{var}(Y) & =\mathbf{E}[N] \operatorname{var}\left(X_{i}\right)+\left(\mathbf{E}[X]_{i}\right)^{2} \operatorname{var}(N)=\frac{3}{2} \times \frac{1000^{2}}{12}+500^{2} \times \frac{3}{4}=312,500 .
\end{aligned}
$$

