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1 Transform of the sum of two independent RVs

Assume X and Y are independent random variables with transforms MX(s) and MY (s) respec-
tively. Let W = X + Y . Let’ find the transform of W :

MW (s) = E
[
esW

]

= E
[
es(X+Y )

]

= E
[
esX+sY

]

= E
[
esXesY

]

= E
[
esX

]
E

[
esY

]
since X and Y are independent

= MX(s)MY (s).

So, we have:
MW (s) = MX(s)MY (s), W = X + Y. (1)

The following examples will demonstrate the use of this formula.

Example 1.1 (Binomial Distribution). First, let’s find the transform of the Bernoulli ran-
dom variable. If Y is a Bernoulli random variable, which takes value 1 with probability p and
value 0 with probability 1− p, it’s transform is

MY (s) = (1− p)e0s + pe1s = 1− p + pes.

Now, let X be a binomial random variable with parameters (n,p). We might recall, that
the binomial random variable can be represented as a sum of n Bernoulli random variables.
Therefore, using the formula (1) we get:

MX(s) = (1− p + pes)n. (2)

Example 1.2 (Sum of Poisson Random Variables). Let X and Y be Poisson random
variables with parameters λ and µ respectively. Then,

MX(s) = eλ(es−1), MY (s) = eµ(es−1).

If W = X + Y , we have:

MW (s) = MX(s)MY (s)

= eλ(es−1) × eµ(es−1)

= eλ(es−1)×µ(es−1)

= e(λ+µ)(es−1).
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The last expression is a transform of a Poisson random variable with parameter λ+µ. Therefore,
W is a Poisson random variable with parameter λ + µ.

Example 1.3 (Sum of Normal Random Variables). Let X and Y be normal random
variables with parameters (µX , σ2

X) and (µY , σ2
Y ) respectively. Then we have:

MX(s) = exp

{
s2σ2

X

2
+ µXs

}
, MY (s) = exp

{
s2σ2

Y

2
+ µY s

}
.

If W = X + Y , we have:

MW (s) = MX(s)MY (s)

= exp

{
s2σ2

X

2
+ µXs

}
× exp

{
s2σ2

Y

2
+ µY s

}

= exp

{
s2σ2

X

2
+ µXs +

s2σ2
Y

2
+ µY s

}

= exp

{
s2(σ2

X + σ2
Y )

2
+ (µX + µY )s

}
,

which is a transform of the normal distribution with parameters (µX + µY , σ2
X + σ2

Y ):

X ∼ N(µX , σ2
X), Y ∼ N(µY , σ2

Y ) ⇒ W = X + Y ∼ N(µX + µY , σ2
X + σ2

Y ).

Example 1.4. Now let’s see if this approach works for the case of two exponential distributions.
Let X and Y be exponential random variables with parameters λ and µ respectively. In this
case

MX(s) =
λ

λ− s
, MY (s) =

µ

µ− s
.

If W = X + Y , we have

MW (s) = MX(s)MY (s) =
λ

λ− s

µ

µ− s
=

λµ

(λ− s)(µ− s)
.

This is not a transform of exponential distribution, therefore, we can deduce that sum of two
exponential random variables is not an exponential random variable. Moreover, since we’ve
never seen this transform before, we can not even identify this distribution.

If X1, X2, . . . , Xn are random variables, it is also possible to define their joint transform as

MX1,X2,...,Xn(s1, s2, . . . , sn) = E
[
es1X2+s2X2+···+snXn

]
. (3)

2 Conditional Expectations as a Random Variable

If X and Y are two random variables, we can consider the conditional expectation of X given
that Y = y: E [X|Y = y]. In general, this conditional expectation of X depends on Y . There-
fore, E [X|Y ] is a function of Y , and therefore it is a random variable. Let me recall the
definitions:

E [X|Y = y] =
∑

x

xpX|Y (x|y), X is discrete, (4)

and

E [X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y) dx, X is continuous. (5)
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Example 2.1. Let X and Y be uniformly distributed in the shaded region from the next figure
(X ≥ 0, Y ≥ 0, X + Y ≤ 1):

X

Y

10

1

y=1−x

1−y

y

The area of this region is equal to 1/2, and therefore

fX,Y (x, y) = 2, (x, y) in the region.

We can calculate the marginal PDF of Y :

fY (y) =

∫ 1−y

0

fX,Y (x, y) dx =

∫ 1−y

0

2 dx = 2(1− y), 0 ≤ y ≤ 1.

Now, we can compute the conditional PDF of X:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

2

2(1− y)
=

1

1− y
, 0 ≤ x ≤ 1− y.

Therefore, we can see that given Y = y, X is a uniform random variable, distributed from 0 to
1− y. Thus, we have:

E [X|Y = y] =
1− y

2
,

and therefore,

E [X|Y ] =
1− Y

2
.

Let’s find the expectation of E [X|Y ]. We have:

E [E [X|Y ]] =





∑
y

E [X|Y = y] pY (y), Y is discrete

∫ ∞

−∞
E [X|Y = y] fY (y) dy, Y is continuous

From the total expectation theorem, we have the following important equality, which is called
the law of iterated expectations:

E [E [X|Y ]] = E [X] . (6)
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Example 2.2. Let’s continue with the previous example. From the law of iterated expectations
and the expression for E [X|Y ] we have:

E [X] = E [E [X|Y ]] = E

[
1− Y

2

]
=

1− E [Y ]

2
.

Since X and Y are distributed symmetrically, we have

E [X] = E [Y ] ,

and

E [X] =
1− E [X]

2
,

from where E [X] = 1/3.

Example 2.3. Assume there is a stick of length l, which you break at a random point of it,
and keep the left part. Then you break it again, and again keep the left part. What is the
expected length of what is left?

Let Y be the length of the remaining part after the first break. Let X be the length of the
remaining part after the second break. We have:

E [Y ] =
l

2
,

since the place of the first break is uniformly distributed from 0 to l. Now, we have a piece
of stick of length Y , and we break it at some random point. The break location is uniformly
distributed from 0 to Y , and therefore,

E [X|Y ] =
Y

2
.

Now, we have:

E [X] = E [E [X|Y ]] = E

[
Y

2

]
=

E [Y ]

2
=

l

4
.
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