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1 Independence

Definition 1.1. Two random variables X and Y are called independent if

fxy(z,y) = fx (@) fy(y). (1)

Since fX\Y(iU‘?J) = fxy(z,y)/fr(y), we have fxy(z,y) = fX|Y(5U’y)fY(y)a and therefore,
substituting into the definition of independence, we obtain

fxiy(zly) = fx(z), (2)

which means that the distribution of X does not depend on the value, which the variable Y
takes. If two random variables X and Y are independent, we have:

P(XeAY eB)=P(X € AP € B). (3)

The properties of independent random variables are similar to the properties of independent
discrete random variables. If X and Y are independent, we have:

E[XY]=E[X]|E[Y] (4)
E[g(X)h(Y)] = E[g(X)|E[g(Y)] ()
var (X +Y) =var (X) +var(Y). (6)

2 Joint CDF

We can define a joint CDF of two random variables in the similar way to the CDF of individual
random variable. As always, CDFs will be denoted by capital letters:

Fxy(z,y) =P(X <2,Y <y) (7)

Expressing CDF through PDF, we have the following equality:

Fy(e,y) = //fxytw)dwdt (8)

Differentiating this equality, we have an expression of PDF in terms of CDF:

O’°F
fxy(z,y) = axg’yy (z,9). 9)




Example 2.1. For two-dimensional uniform distribution in the unit square (X,Y") € [0, 1] x

[0, 1] we have that the probability of an event is equal to its area. Therefore,

Fxy(z,y)=P(X <z,Y <y)=uzy forzel0,1],y€]0,1].

Taking a second partial derivative, we get the PDF of uniform distribution which is a constant:
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=1, forzel0,1],y€l0,1].

3 Derived distributions

In this section we will consider the distributions of the functions of random variables.

general problem will be stated as follows:

The

Assume X is a random variable with the PDF fx(x) (or CDF Fx(z)). Let Y be the random

variable such that Y = ¢g(X). What is the distribution (PDF or CDF) of Y?

To answer this question we will first try to find the CDF of Y and then differentiate it to obtain

PDF of Y. The CDF of Y is given by the following general formula:
B =P <) =P <p= [ fel@ds
{zlg(@)<y}
From this equality, the PDF of Y can be obtained:
dFy
fry) = d—y(y)-

Now let us consider several examples.

(10)

(11)

Example 3.1. Let X be a uniform random variable on the interval [0,1]. Let Y = v/X. We

know the PDF and CDF of the uniform distribution. They are equal to:

0. <0
1, 0<z<1 o<
e ’ 1 B - = =
fx(x) { 0, otherwise Fx(@) T’ (i < i =

We will first find the CDF of Y and then its PDEF"
Fy(y) = P(Y <y)
= P(VX <y)
= P(X <)
=Fx(y*)=y*, for0<y<L
Now, differentiating, we have:

fr(y) =2y, for0<y<1



Example 3.2. Now assume that X has some arbitrary PDF fx(z) and CDF Fx(x), and
Y = X2, Again, first we will find the CDF of Y

Differentiating the equality and using the chain rule, we get:

fy(y)*—\/_fx(\/_)+7fx( VY) = f( x(Vy) + Ix(=vYy), ¥ =0

Now let’s consider the special case when Y is a linear function of X, i.e.
Y =aX +0. (12)
Consider the case when a is positive. We have:

Fy(y) =P <y)
=PlaX+b<y)

“rret)
:pk(y;ﬂ.

Differentiating and using the chain rule, we have:

f()——h( ﬁ

The case of negative a is similar. The general formula we have is the following:

e >——fX( b) (13)

lal a
Example 3.3. Let X be an exponentially distributed random variable with parameter A:
fx(x)=Xe™*, x>0

If Y =aX + b, we have:
A eMo-fa Y=b s g
|al a -

fr(y) =
Now we can see that in the special case when a > 0 and b = 0, we have:

A

frly) =273,y 20,

and therefore the random variable Y = a X is distributed exponentially with parameter %



Now let’s consider the general case, when Y = ¢(X), and let’s assume that g(z) is a strictly
monotonic function. If the function is monotonic, then there exists a inverse function to it, i.e.
we can express X in terms of Y. For example, if Y = ¥, then X = InY. We will denote the
inverse function = = h(y). In this case we have the following fact.

Proposition 3.4. If X is a random variable with the PDF fx(z), and

Y = g(X), and X =h(Y), (14)
then "
Aoy = Fx (b)) @@)\ (15)

Example 3.5. Assume X is a uniform random variable on [0, 1], and Y = g(X) = eX. There-
fore, X = h(Y) =InY, and
dh 1

—(y) = —.
dy y
The distribution of Y can be obtained using the proposition in the following way:

dh

Fr(y) = fx(h(y)) _<y)‘ _

1<y <
dy y=¢

1
y7 — —
where we used that the PDF of X fx(z) =1 for x € [0, 1], and the range of Y is [1, ¢], since
range of X is [0,1], and €® = 1, and e! = e.

The same answer can be obtained without using the proposition in the similar manner as
we did before.

Example 3.6. Let X and Y be uniform random variables on [0,1]. Let Z = Y/X. We will
find the distribution of Z. We have:

ro-p (% <),

In case z < 1, the probability is equal to the following shaded area:
Y

y=2x (z<1)

0 1

This is a right triangle with sides 1 and z, and therefore in case z < 1, Fy(z) = 2.
In case z > 1, the probability is equal to the following shaded area:



This is a trapezoid, area of which can be found by subtracting the area of the triangle with
sides 1 and 1/z from the area of the entire square. Therefore, if 2 > 1, Fz(2) =1 — 4.
Combining these two results, we have the CDF of Z:

2/2, 0<z2<1
Falz) = { 1-1/(22), 1<z

Differentiating, we obtain the PDF of Z:

1/2, 0<z2<1
fz(z) =< 1/(22%), 1<z
0, otherwise.

This distribution has a shape, shown on the following figure:
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Example 3.7. Assume that X and Y are exponential random xariables with parameter \. In



this case, fxy(z,y) = Xe ™ x \e ™. Let Z =X —Y. Let z > 0. Then we have:
Fz(2) = P(Z < 2)
—P(X-Y <2)
—1-P(X-Y >2)
= 1—/ [ fxy(z,y) dx} dy
0

zZ+y

1 —/ e {/ e A d:n} dy
0 z+y

The area of integration is drawn on the following figure:

Y

y=X-z

Now we have to compute Fz(z) for z < 0. From symmetry, we have
Fp(2)=P(Z<2)=P(-Z > —2)=P(Z > —2)=1—Fz(—=2).

Therefore, for z < 0, we have Fyz(z) = %e’\"‘. Combining results, we have:

11—t 2>0
— 2 ) -
FZ(Z) { %6)\'2, 2 <0
Now, differentiating, we obtain a PDF of Z:
A=Az
) geE 220
fZ<Z)_{ %6)‘2, 2<0

This distribution is called a Laplace distribution.



