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1 Independence

Definition 1.1. Two random variables X and Y are called independent if

fX,Y (x, y) = fX(x)fY (y). (1)

Since fX|Y (x|y) = fX,Y (x, y)/fY (y), we have fX,Y (x, y) = fX|Y (x|y)fY (y), and therefore,
substituting into the definition of independence, we obtain

fX|Y (x|y) = fX(x), (2)

which means that the distribution of X does not depend on the value, which the variable Y
takes. If two random variables X and Y are independent, we have:

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B). (3)

The properties of independent random variables are similar to the properties of independent
discrete random variables. If X and Y are independent, we have:

E [XY ] = E [X]E [Y ] (4)

E [g(X)h(Y )] = E [g(X)]E [g(Y )] (5)

var (X + Y ) = var (X) + var (Y ) . (6)

2 Joint CDF

We can define a joint CDF of two random variables in the similar way to the CDF of individual
random variable. As always, CDFs will be denoted by capital letters:

FX,Y (x, y) = P (X ≤ x, Y ≤ y) (7)

Expressing CDF through PDF, we have the following equality:

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (t, w) dw dt. (8)

Differentiating this equality, we have an expression of PDF in terms of CDF:

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y). (9)
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Example 2.1. For two-dimensional uniform distribution in the unit square (X, Y ) ∈ [0, 1] ×
[0, 1] we have that the probability of an event is equal to its area. Therefore,

FX,Y (x, y) = P (X ≤ x, Y ≤ y) = xy for x ∈ [0, 1], y ∈ [0, 1].

Taking a second partial derivative, we get the PDF of uniform distribution which is a constant:

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y)

=
∂

∂y

(
∂

∂x
xy

)

=
∂

∂y
(y)

= 1, for x ∈ [0, 1], y ∈ [0, 1].

3 Derived distributions

In this section we will consider the distributions of the functions of random variables. The
general problem will be stated as follows:

Assume X is a random variable with the PDF fX(x) (or CDF FX(x)). Let Y be the random
variable such that Y = g(X). What is the distribution (PDF or CDF) of Y ?

To answer this question we will first try to find the CDF of Y and then differentiate it to obtain
PDF of Y . The CDF of Y is given by the following general formula:

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) =

∫

{x|g(x)≤y}
fX(x) dx. (10)

From this equality, the PDF of Y can be obtained:

fY (y) =
dFY

dy
(y). (11)

Now let us consider several examples.

Example 3.1. Let X be a uniform random variable on the interval [0, 1]. Let Y =
√

X. We
know the PDF and CDF of the uniform distribution. They are equal to:

fX(x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

FX(x) =





0, x ≤ 0
x, 0 ≤ x ≤ 1
1, 1 ≤ x

We will first find the CDF of Y and then its PDF:

FY (y) = P (Y ≤ y)

= P (
√

X ≤ y)

= P (X ≤ y2)

= FX(y2) = y2, for 0 ≤ y ≤ 1.

Now, differentiating, we have:

fY (y) = 2y, for 0 ≤ y ≤ 1.
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Example 3.2. Now assume that X has some arbitrary PDF fX(x) and CDF FX(x), and
Y = X2. Again, first we will find the CDF of Y :

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √
y)

= FX(
√

y)− FX(−√y).

Differentiating the equality and using the chain rule, we get:

fY (y) =
1

2
√

y
fX(

√
y) +

1

2
√

y
fX(−√y) =

1

2
√

y
(fX(

√
y) + fX(−√y)) , y ≥ 0.

Now let’s consider the special case when Y is a linear function of X, i.e.

Y = aX + b. (12)

Consider the case when a is positive. We have:

FY (y) = P (Y ≤ y)

= P (aX + b ≤ y)

= P

(
X ≤ y − b

a

)

= FX

(
y − b

a

)
.

Differentiating and using the chain rule, we have:

fY (y) =
1

a
fX

(
y − b

a

)
.

The case of negative a is similar. The general formula we have is the following:

fY (y) =
1

|a|fX

(
y − b

a

)
. (13)

Example 3.3. Let X be an exponentially distributed random variable with parameter λ:

fX(x) = λe−λx, x ≥ 0.

If Y = aX + b, we have:

fY (y) =
λ

|a|e
−λ(y−b)/a,

y − b

a
≥ 0.

Now we can see that in the special case when a ≥ 0 and b = 0, we have:

fY (y) =
λ

a
e−

λ
a

y, y ≥ 0,

and therefore the random variable Y = aX is distributed exponentially with parameter λ
a
.
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Now let’s consider the general case, when Y = g(X), and let’s assume that g(x) is a strictly
monotonic function. If the function is monotonic, then there exists a inverse function to it, i.e.
we can express X in terms of Y . For example, if Y = eX , then X = ln Y . We will denote the
inverse function x = h(y). In this case we have the following fact.

Proposition 3.4. If X is a random variable with the PDF fX(x), and

Y = g(X), and X = h(Y ), (14)

then

fY (y) = fX(h(y))

∣∣∣∣
dh

dy
(y)

∣∣∣∣ . (15)

Example 3.5. Assume X is a uniform random variable on [0, 1], and Y = g(X) = eX . There-
fore, X = h(Y ) = ln Y , and

dh

dy
(y) =

1

y
.

The distribution of Y can be obtained using the proposition in the following way:

fY (y) = fX(h(y))

∣∣∣∣
dh

dy
(y)

∣∣∣∣ =
1

y
, 1 ≤ y ≤ e

where we used that the PDF of X fX(x) = 1 for x ∈ [0, 1], and the range of Y is [1, e], since
range of X is [0, 1], and e0 = 1, and e1 = e.

The same answer can be obtained without using the proposition in the similar manner as
we did before.

Example 3.6. Let X and Y be uniform random variables on [0, 1]. Let Z = Y/X. We will
find the distribution of Z. We have:

FZ(z) = P

(
Y

X
≤ z

)
.

In case z ≤ 1, the probability is equal to the following shaded area:

X

Y

0 1

1

y=zx  (z<1)

z

This is a right triangle with sides 1 and z, and therefore in case z ≤ 1, FZ(z) = z
2
.

In case z ≥ 1, the probability is equal to the following shaded area:
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X

Y

0 1

1

z y=zx  (z>1)

1/z

This is a trapezoid, area of which can be found by subtracting the area of the triangle with
sides 1 and 1/z from the area of the entire square. Therefore, if z ≥ 1, FZ(z) = 1− 1

2z
.

Combining these two results, we have the CDF of Z:

FZ(z) =

{
z/2, 0 ≤ z ≤ 1
1− 1/(2z), 1 ≤ z.

Differentiating, we obtain the PDF of Z:

fZ(z) =





1/2, 0 ≤ z ≤ 1
1/(2z2), 1 ≤ z
0, otherwise.

This distribution has a shape, shown on the following figure:

z

f(z)

1/2

1

Example 3.7. Assume that X and Y are exponential random xariables with parameter λ. In
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this case, fX,Y (x, y) = λe−λx × λe−λy. Let Z = X − Y . Let z ≥ 0. Then we have:

FZ(z) = P (Z ≤ z)

= P (X − Y ≤ z)

= 1− P (X − Y ≥ z)

= 1−
∫ ∞

0

[∫ ∞

z+y

fX,Y (x, y) dx

]
dy

= 1−
∫ ∞

0

λe−λy

[∫ ∞

z+y

λe−λx dx

]
dy

= 1−
∫ ∞

0

λe−λye−λ(z+y) dy

= 1− e−λz

∫ ∞

0

λe2λy dy

= 1− 1

2
e−λz.

The area of integration is drawn on the following figure:

Y

X

z

y=x−z

Now we have to compute FZ(z) for z ≤ 0. From symmetry, we have

FZ(z) = P (Z ≤ z) = P (−Z ≥ −z) = P (Z ≥ −z) = 1− FZ(−z).

Therefore, for z ≤ 0, we have FZ(z) = 1
2
eλz. Combining results, we have:

FZ(z) =

{
1− 1

2
e−λz, z ≥ 0

1
2
eλz, z ≤ 0.

Now, differentiating, we obtain a PDF of Z:

fZ(z) =

{
λ
2
e−λz, z ≥ 0

λ
2
eλz, z ≤ 0.

This distribution is called a Laplace distribution.
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