Lecture 16

Andrei Antonenko

Feb 28, 2005

1 Independence

Definition 1.1. Two random variables X and Y are called independent if

$$
\begin{equation*}
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \tag{1}
\end{equation*}
$$

Since $f_{X \mid Y}(x \mid y)=f_{X, Y}(x, y) / f_{Y}(y)$, we have $f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)$, and therefore, substituting into the definition of independence, we obtain

$$
\begin{equation*}
f_{X \mid Y}(x \mid y)=f_{X}(x), \tag{2}
\end{equation*}
$$

which means that the distribution of X does not depend on the value, which the variable Y takes. If two random variables X and Y are independent, we have:

$$
\begin{equation*}
P(X \in A, Y \in B)=P(X \in A) P(Y \in B) \tag{3}
\end{equation*}
$$

The properties of independent random variables are similar to the properties of independent discrete random variables. If X and Y are independent, we have:

$$
\begin{align*}
\mathbf{E}[X Y] & =\mathbf{E}[X] \mathbf{E}[Y] \tag{4}\\
\mathbf{E}[g(X) h(Y)] & =\mathbf{E}[g(X)] \mathbf{E}[g(Y)] \tag{5}\\
\operatorname{var}(X+Y) & =\operatorname{var}(X)+\operatorname{var}(Y) . \tag{6}
\end{align*}
$$

2 Joint CDF

We can define a joint CDF of two random variables in the similar way to the CDF of individual random variable. As always, CDFs will be denoted by capital letters:

$$
\begin{equation*}
F_{X, Y}(x, y)=P(X \leq x, Y \leq y) \tag{7}
\end{equation*}
$$

Expressing CDF through PDF, we have the following equality:

$$
\begin{equation*}
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, w) d w d t \tag{8}
\end{equation*}
$$

Differentiating this equality, we have an expression of PDF in terms of CDF:

$$
\begin{equation*}
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y) \tag{9}
\end{equation*}
$$

Example 2.1. For two-dimensional uniform distribution in the unit square $(X, Y) \in[0,1] \times$ $[0,1]$ we have that the probability of an event is equal to its area. Therefore,

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=x y \quad \text { for } x \in[0,1], y \in[0,1] .
$$

Taking a second partial derivative, we get the PDF of uniform distribution which is a constant:

$$
\begin{aligned}
f_{X, Y}(x, y) & =\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y) \\
& =\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x} x y\right) \\
& =\frac{\partial}{\partial y}(y) \\
& =1, \quad \text { for } x \in[0,1], y \in[0,1] .
\end{aligned}
$$

3 Derived distributions

In this section we will consider the distributions of the functions of random variables. The general problem will be stated as follows:
Assume X is a random variable with the $\operatorname{PDF} f_{X}(x)$ (or $\operatorname{CDF} F_{X}(x)$). Let Y be the random variable such that $Y=g(X)$. What is the distribution (PDF or CDF) of Y ?
To answer this question we will first try to find the CDF of Y and then differentiate it to obtain PDF of Y. The CDF of Y is given by the following general formula:

$$
\begin{equation*}
F_{Y}(y)=P(Y \leq y)=P(g(X) \leq y)=\int_{\{x \mid g(x) \leq y\}} f_{X}(x) d x \tag{10}
\end{equation*}
$$

From this equality, the PDF of Y can be obtained:

$$
\begin{equation*}
f_{Y}(y)=\frac{d F_{Y}}{d y}(y) \tag{11}
\end{equation*}
$$

Now let us consider several examples.
Example 3.1. Let X be a uniform random variable on the interval $[0,1]$. Let $Y=\sqrt{X}$. We know the PDF and CDF of the uniform distribution. They are equal to:

$$
f_{X}(x)=\left\{\begin{array}{ll}
1, & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array} \quad F_{X}(x)= \begin{cases}0, & x \leq 0 \\
x, & 0 \leq x \leq 1 \\
1, & 1 \leq x\end{cases}\right.
$$

We will first find the CDF of Y and then its PDF:

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(\sqrt{X} \leq y) \\
& =P\left(X \leq y^{2}\right) \\
& =F_{X}\left(y^{2}\right)=y^{2}, \quad \text { for } 0 \leq y \leq 1
\end{aligned}
$$

Now, differentiating, we have:

$$
f_{Y}(y)=2 y, \quad \text { for } 0 \leq y \leq 1
$$

Example 3.2. Now assume that X has some arbitrary PDF $f_{X}(x)$ and $\operatorname{CDF} F_{X}(x)$, and $Y=X^{2}$. Again, first we will find the CDF of Y :

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P\left(X^{2} \leq y\right) \\
& =P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) .
\end{aligned}
$$

Differentiating the equality and using the chain rule, we get:

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})+\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y})=\frac{1}{2 \sqrt{y}}\left(f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right), \quad y \geq 0
$$

Now let's consider the special case when Y is a linear function of X, i.e.

$$
\begin{equation*}
Y=a X+b \tag{12}
\end{equation*}
$$

Consider the case when a is positive. We have:

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(a X+b \leq y) \\
& =P\left(X \leq \frac{y-b}{a}\right) \\
& =F_{X}\left(\frac{y-b}{a}\right) .
\end{aligned}
$$

Differentiating and using the chain rule, we have:

$$
f_{Y}(y)=\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) .
$$

The case of negative a is similar. The general formula we have is the following:

$$
\begin{equation*}
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right) \tag{13}
\end{equation*}
$$

Example 3.3. Let X be an exponentially distributed random variable with parameter λ :

$$
f_{X}(x)=\lambda e^{-\lambda x}, \quad x \geq 0
$$

If $Y=a X+b$, we have:

$$
f_{Y}(y)=\frac{\lambda}{|a|} e^{-\lambda(y-b) / a}, \quad \frac{y-b}{a} \geq 0
$$

Now we can see that in the special case when $a \geq 0$ and $b=0$, we have:

$$
f_{Y}(y)=\frac{\lambda}{a} e^{-\frac{\lambda}{a} y}, \quad y \geq 0
$$

and therefore the random variable $Y=a X$ is distributed exponentially with parameter $\frac{\lambda}{a}$.

Now let's consider the general case, when $Y=g(X)$, and let's assume that $g(x)$ is a strictly monotonic function. If the function is monotonic, then there exists a inverse function to it, i.e. we can express X in terms of Y. For example, if $Y=e^{X}$, then $X=\ln Y$. We will denote the inverse function $x=h(y)$. In this case we have the following fact.

Proposition 3.4. If X is a random variable with the $P D F f_{X}(x)$, and

$$
\begin{equation*}
Y=g(X), \quad \text { and } \quad X=h(Y) \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h}{d y}(y)\right| . \tag{15}
\end{equation*}
$$

Example 3.5. Assume X is a uniform random variable on $[0,1]$, and $Y=g(X)=e^{X}$. Therefore, $X=h(Y)=\ln Y$, and

$$
\frac{d h}{d y}(y)=\frac{1}{y} .
$$

The distribution of Y can be obtained using the proposition in the following way:

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h}{d y}(y)\right|=\frac{1}{y}, \quad 1 \leq y \leq e
$$

where we used that the PDF of $X f_{X}(x)=1$ for $x \in[0,1]$, and the range of Y is $[1, e]$, since range of X is $[0,1]$, and $e^{0}=1$, and $e^{1}=e$.

The same answer can be obtained without using the proposition in the similar manner as we did before.

Example 3.6. Let X and Y be uniform random variables on $[0,1]$. Let $Z=Y / X$. We will find the distribution of Z. We have:

$$
F_{Z}(z)=P\left(\frac{Y}{X} \leq z\right)
$$

In case $z \leq 1$, the probability is equal to the following shaded area:

This is a right triangle with sides 1 and z, and therefore in case $z \leq 1, F_{Z}(z)=\frac{z}{2}$.
In case $z \geq 1$, the probability is equal to the following shaded area:

This is a trapezoid, area of which can be found by subtracting the area of the triangle with sides 1 and $1 / z$ from the area of the entire square. Therefore, if $z \geq 1, F_{Z}(z)=1-\frac{1}{2 z}$.

Combining these two results, we have the CDF of Z :

$$
F_{Z}(z)= \begin{cases}z / 2, & 0 \leq z \leq 1 \\ 1-1 /(2 z), & 1 \leq z\end{cases}
$$

Differentiating, we obtain the PDF of Z :

$$
f_{Z}(z)= \begin{cases}1 / 2, & 0 \leq z \leq 1 \\ 1 /\left(2 z^{2}\right), & 1 \leq z \\ 0, & \text { otherwise }\end{cases}
$$

This distribution has a shape, shown on the following figure:

Example 3.7. Assume that X and Y are exponential random xariables with parameter λ. In
this case, $f_{X, Y}(x, y)=\lambda e^{-\lambda x} \times \lambda e^{-\lambda y}$. Let $Z=X-Y$. Let $z \geq 0$. Then we have:

$$
\begin{aligned}
F_{Z}(z) & =P(Z \leq z) \\
& =P(X-Y \leq z) \\
& =1-P(X-Y \geq z) \\
& =1-\int_{0}^{\infty}\left[\int_{z+y}^{\infty} f_{X, Y}(x, y) d x\right] d y \\
& =1-\int_{0}^{\infty} \lambda e^{-\lambda y}\left[\int_{z+y}^{\infty} \lambda e^{-\lambda x} d x\right] d y \\
& =1-\int_{0}^{\infty} \lambda e^{-\lambda y} e^{-\lambda(z+y)} d y \\
& =1-e^{-\lambda z} \int_{0}^{\infty} \lambda e^{2 \lambda y} d y \\
& =1-\frac{1}{2} e^{-\lambda z} .
\end{aligned}
$$

The area of integration is drawn on the following figure:

Now we have to compute $F_{Z}(z)$ for $z \leq 0$. From symmetry, we have

$$
F_{Z}(z)=P(Z \leq z)=P(-Z \geq-z)=P(Z \geq-z)=1-F_{Z}(-z) .
$$

Therefore, for $z \leq 0$, we have $F_{Z}(z)=\frac{1}{2} e^{\lambda z}$. Combining results, we have:

$$
F_{Z}(z)= \begin{cases}1-\frac{1}{2} e^{-\lambda z}, & z \geq 0 \\ \frac{1}{2} e^{\lambda z}, & z \leq 0\end{cases}
$$

Now, differentiating, we obtain a PDF of Z :

$$
f_{Z}(z)= \begin{cases}\frac{\lambda}{2} e^{-\lambda z}, & z \geq 0 \\ \frac{\lambda}{2} e^{\lambda z}, & z \leq 0 .\end{cases}
$$

This distribution is called a Laplace distribution.

