Lecture 14

Andrei Antonenko

Feb 23, 2005

1 Conditional expectation: conditioning on events

Now as we know what is a conditional PDF of the random variable (conditioned on event A) is, we can define the conditional expectation.

Definition 1.1. A conditional expectation of the random variable X conditioned on the event A such that $P(A)>0$ is

$$
\begin{equation*}
\mathbf{E}[X \mid A]=\int_{-\infty}^{\infty} x f_{X \mid A}(x \mid A) d x \tag{1}
\end{equation*}
$$

For the conditional expectation the following form of the total expectation theorem holds. If events A_{i} form a partition of the universe, and the conditional expectations are known for all A_{i} we can compute the unconditional expectation of X :

$$
\begin{equation*}
\mathbf{E}[X]=\sum_{i} P\left(A_{i}\right) \mathbf{E}\left[X \mid A_{i}\right] . \tag{2}
\end{equation*}
$$

Also, for continuous random variables, and partition of the universe into events, we have the following version of total probability theorem:

$$
\begin{equation*}
f_{X}(x)=\sum_{i} P\left(A_{i}\right) f_{X \mid A_{i}}\left(x \mid A_{i}\right) \tag{3}
\end{equation*}
$$

In the next examples we will see how one can use them.
Example 1.2. Consider the random variable X, PDF of which is a piecewise constant, for example,

$$
f_{X}(x)= \begin{cases}1 / 3, & 0 \leq x \leq 1 \\ 2 / 3, & 1<x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

There are two ways we can compute the expectation of X. First one is by direct computation:

$$
\begin{aligned}
\mathbf{E}[X] & =\int_{-\infty}^{\infty} f_{X}(x) d x \\
& =\int_{0}^{2} f_{X}(x) d x \\
& =\int_{0}^{1} \frac{1}{3} x d x+\int_{1}^{2} \frac{2}{3} x d x \\
& =\left.\frac{1}{3} \frac{x^{2}}{2}\right|_{0} ^{1}+\left.\frac{2}{3} \frac{x^{2}}{2}\right|_{1} ^{2} \\
& =\frac{1}{3}\left(\frac{1}{2}\right)+\frac{2}{3}\left(\frac{4}{2}-\frac{1}{2}\right) \\
& =\frac{7}{6}
\end{aligned}
$$

Another way is to use total expectation theorem. Let event A_{1} and A_{2} be as follows:

$$
A_{1}=\{0 \leq X \leq 1\}, \quad A_{2}=\{1<X \leq 2\}
$$

Given event A_{1} we see that PDF of X is a constant (on $[0,1]$), and therefore X is uniform on $[0,1]$. Thus, the conditional expectation of X conditioned on $A_{1}=\{0 \leq X \leq 1\}$ is $\mathbf{E}\left[X \mid A_{1}\right]=(0+1) / 2=1 / 2$. By similar reasoning, $\mathbf{E}\left[X \mid A_{1}\right]=(1+2) / 2=3 / 2$. The probabilities of events A_{1} and A_{2} are the following:

$$
P\left(A_{1}\right)=P(0 \leq X \leq 1)=\frac{1}{3} ; \quad P\left(A_{2}\right)=P(1<X \leq 2)=\frac{2}{3} .
$$

Therefore, by total expectation theorem, we have:

$$
\mathbf{E}[X]=\mathbf{E}\left[X \mid A_{1}\right] P\left(A_{1}\right)+\mathbf{E}\left[X \mid A_{2}\right] P\left(A_{2}\right)=\frac{1}{2} \cdot \frac{1}{3}+\frac{3}{2} \cdot \frac{2}{3}=\frac{7}{6} .
$$

Example 1.3. Assume the train comes to station every 15 minutes: 7:00, 7:15, 7:30, etc. You come to the station at some time, uniformly distributed between 7:10 and 7:30, and board the first available train. What is the distribution of your waiting time?

We can decompose the time into two periods: $A_{1}=[7: 10,7: 15]$, and $A_{2}=[7: 15,7: 30]$. In case of event A_{1} you board the 7:15 train, in case of event A_{2} you board the 7:30 train.

The probabilities of these events are the following:

$$
P\left(A_{1}\right)=\frac{5}{20}=\frac{1}{4} ; \quad P\left(A_{2}\right)=\frac{15}{20}=\frac{3}{4} .
$$

In case of event A_{1}, the waiting time is uniformly distributed for 0 to 5 minutes, and in case of event A_{2} - from 0 to 15 minutes. Therefore, the conditional PDF are the following:

$$
f_{X \mid A_{1}}\left(x \mid A_{1}\right)=\left\{\begin{array}{ll}
1 / 5, & 0 \leq X \leq 5 \\
0, & \text { otherwise }
\end{array} \quad f_{X \mid A_{2}}\left(x \mid A_{2}\right)= \begin{cases}1 / 15, & 0 \leq X \leq 15 \\
0, & \text { otherwise }\end{cases}\right.
$$

Using the total probability theorem, we have:

$$
f_{X}(x)=P\left(A_{1}\right) f_{X \mid A_{1}}\left(x \mid A_{1}\right)+P\left(A_{2}\right) f_{X \mid A_{2}}\left(x \mid A_{2}\right)
$$

Therefore,

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{4} \cdot \frac{1}{5}+\frac{3}{4} \cdot \frac{1}{15}, & 0 \leq x \leq 5 \\
\frac{1}{4} \cdot 0+\frac{3}{4} \cdot \frac{1}{15}, & 5<x \leq 15
\end{array}= \begin{cases}\frac{1}{10}, & 0 \leq x \leq 5 \\
\frac{1}{20}, & 5<x \leq 15\end{cases}\right.
$$

