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1 General random variables

In a lot of experiments it is useful to consider the random variables which take not a discrete
set of values, but a continuous. For example, the speed of the wind is a real number, a speed
of the vehicle is a real number. All the theory developed for discrete random variables can
be changed to accommodate this general situation. All the concepts introduced for discrete
random variables have their counterparts for continuous. In this part of the course we will take
a closer look at it.

2 Probability density function

Continuous random variables take values in some particular interval. Unlike discrete random
variables, for continuous random variables we will talk about events in which the variable take a
value in some given set. I.e. instead of events {X = x} we will be considering events {X ∈ B},
where B is a subset of the real line. For example, if a random variable takes values from 0 to
1 we may talk about the probability that the random variables is greater than 0.5, which is
P (X > 0.5) = P (X ∈ (0.5, 1]).

X is called a continuous random variable if its probability distribution can be described
by a function fX(x) called a probability density function (pdf), such that

P (X ∈ B) =

∫

B

fX(x) dx. (1)

In case when B = [a, b], we have:

P (X ∈ B) = P (a ≤ X ≤ b) =

∫ b

a

fX(x) dx. (2)

Let us notice, that

P (X = a) =

∫ a

a

fX(x) dx = 0, (3)

and therefore,

P (a ≤ X ≤ b) = P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b). (4)

Geometrically speaking, the probability that X belong to the interval [a, b] is the area under
the graph of the function fX(x) above the interval [a, b].
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Furthermore, we can see that P (−∞ < X < ∞) = 1, and therefore pdf should have a
following property: ∫ ∞

−∞
fX(x) dx = 1. (5)

Now let’s look at the physical interpretation of fX(x). Let δ be a small number. Therefore,

P ([x, x + δ]) =

∫ x+δ

x

fX(t) dt ≈ δfX(x). (6)

So, the fX(x) is a probability mass per unit length.
Now we will consider several examples.

Example 2.1 (Continuous Uniform Random Variable). Let us consider a random vari-
able which takes values on the interval [0, 1] such that all subsets of the same length are equally
likely. Therefore, the pdf of this random variable is constant:

fX(x) =

{
c, x ∈ [0, 1]
0, otherwise

The constant c can be determined from the normalization property:

1 =

∫ ∞

−∞
fX(x) dx =

∫ 1

0

c dx = c.

Therefore, the pdf of the discrete random variable taking values on the interval [0, 1] is given
by:

fX(x) =

{
1, x ∈ [0, 1]
0, otherwise

(7)

In a general case, when the uniform random variable takes values on the interval [a, b], we
have

fX(x) =

{ 1

b− a
, x ∈ [a, b]

0, otherwise
(8)

Example 2.2. The pdf of the random variable is not necessarily bounded: let’s consider the
random variable with the following pdf

fX(x) =





1

2
√

x
, x ∈ [0, 1]

0, otherwise

This is a valid pdf, since we have:

∫ ∞

−∞
fX(x) dx =

∫ 1

0

1

2
√

x
dx =

√
x
∣∣1
0

= 1,

but it can take arbitrarily large values.
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3 Expectation

The expectation for continuous random variables can be defined in the similar way as for
discrete random variables:

E [X] =

∫ ∞

−∞
xfX(x) dx. (9)

It is an anticipated average value in large number of independent repetitions of experiment. In
case Y = g(X), we have

E [Y ] = E [g(X)] =

∫ ∞

−∞
g(x)fX(x) dx. (10)

We can define n-th moment as

E [Xn] =

∫ ∞

−∞
xnfX(x) dx. (11)

The variance is

var (X) = E
[
(X − E [X])2

]
=

∫ ∞

−∞
(x− E [X])2fX(x) dx. (12)

The following formula for variance is also true for continuous random variables:

var (X) = E
[
X2

]− (E [X])2. (13)

Example 3.1. Let’s compute the expectation and variance of the continuous uniform random
variable:

E [X] =

∫ ∞

−∞
xfX(x) dx

=

∫ b

a

x
1

b− a
dx

=
1

b− a

x2

2

∣∣∣∣
b

a

=
b2 − a2

2(b− a)
=

a + b

2
.

E
[
X2

]
=

∫ b

a

x2

b− a
dx

=
a2 + ab + b2

3
.

var (X) =
(b− a)2

12

Example 3.2. Let X be a uniform random variable on [0, 1]. Assume

Y = g(X) =

{
1, x ≤ 1/3
2, x > 1/3
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In this case Y is a discrete random variable with the following PMF:

pY (y) =

{
1/3, y = 1
2/3, y = 2

Therefore,

E [Y ] = 1 · 1

3
+ 2 · 2

3
=

5

3
.

Also, we can compute it in a different way:

E [Y ] = E [g(X)] =

∫ 1

0

g(x)fX(x) dx

=

∫ 1/3

0

dx +

∫ 1

1/3

2 dx =
5

3
.

4 Exponential random variable

Exponential random variable is a random variable with the following pdf:

fX(x) =

{
λe−λx, x ≥ 0
0, otherwise

(14)

We can compute the expectation of the exponential random variable and its variance.

E [X] =

∫ ∞

0

xλe−λx dx

= (−xe−λx)
∣∣∞
0

+

∫ ∞

0

e−λx dx

= 0− e−λx

λ

∣∣∣∣
∞

0

=
1

λ

E
[
X2

]
=

∫ ∞

0

x2λe−λx dx

= (−x2e−λx)
∣∣∞
0

+

∫ ∞

0

2xe−λx dx

= 0 +
2

λ
E [X]

=
2

λ2
.

Finally, using the formula for var (X), we get:

var (X) = E
[
X2

]− (E [X])2 =
2

λ2
− 1

λ2
=

1

λ2
.

The exponential random variable is normally used for time, until equipment breaks down, time
until the accident, etc. It will play a crucial role by the end of the course when we will be
talking about the Poisson processes.
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5 Cumulative density function

So far, discrete and continuous random variables are described by different objects: PMF in
case of discrete random variables, and pdf in case of continuous random variables. It is good
to develop a way to describe all random variables by means independent of whether random
variable is discrete or continuous.

Definition 5.1. Cumulative density function (CDF) of the random variable X is defined
as

FX(x) = P (X ≤ x) =





∑

k≤x

pX(k), X : discrete

∫ x

−∞
fX(t) dt, X : continuous

(15)

We will list the properties of the CDF:

(1) FX(x) is nondecreasing:
FX(x) ≤ FX(y) for x ≤ y;

(2) Limit properties:

FX(x) → 0 as x → −∞ (16)

FX(x) → 1 as x →∞ (17)

(3) For discrete random variable X,

pX(k) = P (X ≤ k)− P (X ≤ k − 1) = FX(k)− FX(k − 1). (18)

(4) For continuous random variable X,

FX(x) =

∫ x

−∞
fX(t) dt, (19)

and

fX(x) =
dFX(x)

dx
. (20)

In the next example, we will find the CDF of geometric random variable and of exponential
random variable, and look at the connection between them.

Example 5.2 (CDF of geometric and exponential random variables). For geometric
random variable we have:

pX(k) = p(1− p)k−1,

therefore,

F geo
X (n) = P (X ≤ n) =

n∑

k=1

p(1− p)k−1 = p
1− (1− p)n

1− (1− p)
= 1− (1− p)n

Now, for exponential random variable, we have:

F exp
X (x) =

∫ x

0

λe−λt dt = 1− e−λx. (21)
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Let δ =
− ln(1− p)

λ
. Therefore,

(1− p) = e−λδ.

If δ is small, we get the proximity between exponential distribution and geometric. Exponential
distribution can be viewed as a limiting case of the following situation: every δ seconds a coin
with probability of heads equal to p – small, is flipped. The number of the experiment on which
we get the first head is given by the geometric distribution. The time of the occurrence of the
first head can be approximated by the exponential distribution.
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