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1 Conditional expectation: Properties, Examples

One of the most interesting properties of the conditional expectation is a total expectation
theorem:

E [X] =
󰁛

y

pY (y)E [X|Y = y] (1)

or in a different form:
E [X] =

󰁛

y

P (Ai)E [X|Ai] , (2)

where events Ai form a partition of the sample space Ω.

Proof.

E [X] =
󰁛

x

xpX(x) =

=
󰁛

x

x
󰁛

y

pY (y)pX|Y (x|y) =

=
󰁛

y

pY (y)
󰁛

x

xpX|Y (x|y) =

=
󰁛

y

E [X|Y = y] .

Example 1.1. Messages are transmitted from the computer in the New York City to Boston
with probability 0.5, to Chicago with probability 0.3, and to San Francisco with probability
0.2. The average transmission time of the message to Boston is 0.05 sec, to Chicago is 0.1 sec,
and to San Francisco 0.3 sec. What is the average transmission time of the message?

By total expectation theorem,

E [X] = 0.5 · 0.05 + 0.3 · 0.1 + 0.2 · 0.3 = 0.115 sec.

Example 1.2 (Mean and variance of the geometric random variable). The PMF of the geo-
metric random variable is pX(k) = p(1 − p)k−1, k = 1, 2, . . . . It describes the number of the
experiment on which the first success occurred in the series of experiment. To compute the ex-
pectation we must compute the following sum:

󰁓
k kp(1−p)k−1, but it is pretty tedious. We will
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use the different method. We will use the total expectation theorem with events A0 = {X = 1}
and A1 = {X > 1}.

If the event A0 happened, we have:

E [X|A0] = E [X|X = 1] = 1

If the event A1 happened, i.e. the first experiment was unsuccessful. Therefore, we just waisted
the first experiment, and we start everything from the beginning. Therefore,

E [X|A1] = E [X|X > 1] = E [X] + 1.

Thus, by total expectation theorem, we have:

E [X] = pE [X|A0] + (1− p)E [X|A1] =

= p · 1 + (1− p)(1 + E [X]),

from where one can find

E [X] =
1

p
. (3)

By similar reasoning, we get:
E
󰀅
X2|X = 1

󰀆
= 1,

and
E
󰀅
X2|X > 1

󰀆
= E

󰀅
(X + 1)2

󰀆
= E

󰀅
X2 + 2X + 1

󰀆
= E

󰀅
X2

󰀆
+ 2E [X] + 1.

By total expectation theorem,

E
󰀅
X2

󰀆
= pE

󰀅
X2|X = 1

󰀆
+ (1− p)E

󰀅
X2|X > 1

󰀆
,

from where we can obtain the value for E [X2]:

E
󰀅
X2

󰀆
=

2

p2
− 1

p
. (4)

Therefore,

var (X) = E
󰀅
X2

󰀆
− (E [X])2 =

2

p2
− 1

p
− 1

p2
=

1− p

p2
. (5)

2 Independence

As for events, we can define independence for random variables.

Definition 2.1. Random variable X is called independent of the event A if

P (X = x and A) = P (X = x)P (A) = pX(x)P (A). (6)

Since pX|A = P (X = x and A)/P (A), from where we get

pX(x) = pX|A(x), (7)

i.e. the occurrence of A does not affect the distribution of the variable X.
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Example 2.2. Consider two independent tosses of the fair coin. Let X be the number of heads.
Then X has the following distribution:

pX(x) =

󰀻
󰀿

󰀽

1/4, x = 0
1/2, x = 1
1/3, x = 2

Let the event A be the event that the number of heads is even. Using formula pX|A(x) = P (X =
x and A)/P (A), we have:

pX|A(x) =

󰀻
󰀿

󰀽

1/2, x = 0
0, x = 1
1/2, x = 2

and therefore X and A are (obviously) not independent.

Definition 2.3. Two random variables X and Y are called independent if

pX,Y (x, y) = pX(x)pY (y). (8)

Formula pX,Y (x, y) = pY (y)pX|Y (x|y) implies that pX(x) = pX|Y (x|y), i.e. value of Y does
not tell us anything about X.

Also we can introduce a notion of conditional independence.

Definition 2.4. Two random variable X and Y are called conditionally independent given an
event A (with positive probability), if

P (X = x, Y = y|A) = P (X = x|A)P (Y = y|A), (9)

or in different notation,
pX,Y |A(x, y) = pX|A(x)pY |A(y). (10)

Now let’s look at the expectation of the product of two random variables. In fact, if X and
Y are independent, than

E [XY ] = E [X]E [Y ] . (11)

We will prove this fact:

E [XY ] =
󰁛

x,y

xypX,Y (x, y) =

=
󰁛

x

󰁛

y

xypX(x)pY (y) =

=
󰁛

x

xpX(x)
󰁛

y

ypY (y) =

= E [X]E [Y ] .

Similar calculations show that

E [g(X)h(Y )] = E [g(X)]E [h(Y )] . (12)
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Now, assume Z = X + Y . We know that E [Z] = E [X] + E [Y ]. Now we will compute the
variance of Z, assuming that X and Y are independent.

var (Z) = E
󰀅
(X + Y − E [X + Y ])2

󰀆
=

= E
󰀅
((X − E [X]) + (Y − E [Y ]))2

󰀆
=

= E
󰀅
(X − E [X])2

󰀆
+ E

󰀅
(Y − E [Y ])2

󰀆
+ 2E [(X − E [X])(Y − E [Y ])] .

Since X and Y are independent, we have:

E [(X − E [X])(Y − E [Y ])] = E [(X − E [X])]E [(Y − E [Y ])] = 0

, and therefore
var (Z) = var (X) + var (Y ) . (13)

We can generalize the notion of independence to the case of more than 2 random variables.
For example, three random variables X, Y , and Z are called independent if

pX,Y,Z(x, y, z) = pX(x)pY (y)pZ(z). (14)

Also, if three or more variables Xi are independent, then

var (X1 + · · ·+Xn) = var (X1) + · · ·+ var (Xn) . (15)

Example 2.5 (Variance of binomial random variable). As we saw before, binomial random
variableX with parameters n and p can be represented as a sum of n Bernoulli random variables
Xi with parameter p. Since the variance of Bernoulli r.v. is equal to var (Xi) = p(1 − p), we
have

var (X) = np(1− p). (16)

Example 2.6 (Mean and variance of the sample mean). Assume we would like to estimate the
approval rating of the president. We ask n people, and let Xi be the random variable which
denotes the choice of i’th person:

Xi =

󰀝
1, if person approves the president’s performance
0, if person does not approve the president’s performance

We model variables Xi as independent Bernoulli random variable with common mean p and
variance p(1−p). We view p as a real approval rating of the president. We average the responses
and compute the sample mean

Sn =
X1 +X2 + · · ·+Xn

n
. (17)

We have:

E [Sn] =
1

n
(E [X1] + · · ·+ E [Xn]) =

1

n
· np = p, (18)

and since Xi’s are independent,

var (Sn) = var

󰀕
X1 + · · ·+Xn

n

󰀖
=

1

n2
(var (X1) + · · ·+ var (Xn)) =

p(1− p)

n
. (19)

Therefore, Sn is a good estimate for p, since it’s average is equal to p, and it’s variance (accuracy)
improves as sample size n increases.
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