## Lecture 10-11

Andrei Antonenko

Feb 14-16, 2005

## 1 Conditional expectation: Properties, Examples

One of the most interesting properties of the conditional expectation is a total expectation theorem:

$$
\begin{equation*}
\mathbf{E}[X]=\sum_{y} p_{Y}(y) \mathbf{E}[X \mid Y=y] \tag{1}
\end{equation*}
$$

or in a different form:

$$
\begin{equation*}
\mathbf{E}[X]=\sum_{y} P\left(A_{i}\right) \mathbf{E}\left[X \mid A_{i}\right], \tag{2}
\end{equation*}
$$

where events $A_{i}$ form a partition of the sample space $\Omega$.
Proof.

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{x} x p_{X}(x)= \\
& =\sum_{x} x \sum_{y} p_{Y}(y) p_{X \mid Y}(x \mid y)= \\
& =\sum_{y} p_{Y}(y) \sum_{x} x p_{X \mid Y}(x \mid y)= \\
& =\sum_{y} \mathbf{E}[X \mid Y=y] .
\end{aligned}
$$

Example 1.1. Messages are transmitted from the computer in the New York City to Boston with probability 0.5 , to Chicago with probability 0.3 , and to San Francisco with probability 0.2 . The average transmission time of the message to Boston is 0.05 sec , to Chicago is 0.1 sec , and to San Francisco 0.3 sec . What is the average transmission time of the message?

By total expectation theorem,

$$
\mathbf{E}[X]=0.5 \cdot 0.05+0.3 \cdot 0.1+0.2 \cdot 0.3=0.115 \mathrm{sec}
$$

Example 1.2 (Mean and variance of the geometric random variable). The PMF of the geometric random variable is $p_{X}(k)=p(1-p)^{k-1}, k=1,2, \ldots$. It describes the number of the experiment on which the first success occurred in the series of experiment. To compute the expectation we must compute the following sum: $\sum_{k} k p(1-p)^{k-1}$, but it is pretty tedious. We will
use the different method. We will use the total expectation theorem with events $A_{0}=\{X=1\}$ and $A_{1}=\{X>1\}$.

If the event $A_{0}$ happened, we have:

$$
\mathbf{E}\left[X \mid A_{0}\right]=\mathbf{E}[X \mid X=1]=1
$$

If the event $A_{1}$ happened, i.e. the first experiment was unsuccessful. Therefore, we just waisted the first experiment, and we start everything from the beginning. Therefore,

$$
\mathbf{E}\left[X \mid A_{1}\right]=\mathbf{E}[X \mid X>1]=\mathbf{E}[X]+1
$$

Thus, by total expectation theorem, we have:

$$
\begin{aligned}
\mathbf{E}[X] & =p \mathbf{E}\left[X \mid A_{0}\right]+(1-p) \mathbf{E}\left[X \mid A_{1}\right]= \\
& =p \cdot 1+(1-p)(1+\mathbf{E}[X]),
\end{aligned}
$$

from where one can find

$$
\begin{equation*}
\mathbf{E}[X]=\frac{1}{p} . \tag{3}
\end{equation*}
$$

By similar reasoning, we get:

$$
\mathbf{E}\left[X^{2} \mid X=1\right]=1
$$

and

$$
\mathbf{E}\left[X^{2} \mid X>1\right]=\mathbf{E}\left[(X+1)^{2}\right]=\mathbf{E}\left[X^{2}+2 X+1\right]=\mathbf{E}\left[X^{2}\right]+2 \mathbf{E}[X]+1
$$

By total expectation theorem,

$$
\mathbf{E}\left[X^{2}\right]=p \mathbf{E}\left[X^{2} \mid X=1\right]+(1-p) \mathbf{E}\left[X^{2} \mid X>1\right]
$$

from where we can obtain the value for $\mathbf{E}\left[X^{2}\right]$ :

$$
\begin{equation*}
\mathbf{E}\left[X^{2}\right]=\frac{2}{p^{2}}-\frac{1}{p} . \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{2}{p^{2}}-\frac{1}{p}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}} . \tag{5}
\end{equation*}
$$

## 2 Independence

As for events, we can define independence for random variables.
Definition 2.1. Random variable $X$ is called independent of the event $A$ if

$$
\begin{equation*}
P(X=x \text { and } A)=P(X=x) P(A)=p_{X}(x) P(A) \tag{6}
\end{equation*}
$$

Since $p_{X \mid A}=P(X=x$ and $A) / P(A)$, from where we get

$$
\begin{equation*}
p_{X}(x)=p_{X \mid A}(x), \tag{7}
\end{equation*}
$$

i.e. the occurrence of $A$ does not affect the distribution of the variable $X$.

Example 2.2. Consider two independent tosses of the fair coin. Let $X$ be the number of heads. Then $X$ has the following distribution:

$$
p_{X}(x)= \begin{cases}1 / 4, & x=0 \\ 1 / 2, & x=1 \\ 1 / 3, & x=2\end{cases}
$$

Let the event $A$ be the event that the number of heads is even. Using formula $p_{X \mid A}(x)=P(X=$ $x$ and $A) / P(A)$, we have:

$$
p_{X \mid A}(x)= \begin{cases}1 / 2, & x=0 \\ 0, & x=1 \\ 1 / 2, & x=2\end{cases}
$$

and therefore $X$ and $A$ are (obviously) not independent.
Definition 2.3. Two random variables $X$ and $Y$ are called independent if

$$
\begin{equation*}
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y) \tag{8}
\end{equation*}
$$

Formula $p_{X, Y}(x, y)=p_{Y}(y) p_{X \mid Y}(x \mid y)$ implies that $p_{X}(x)=p_{X \mid Y}(x \mid y)$, i.e. value of $Y$ does not tell us anything about $X$.

Also we can introduce a notion of conditional independence.
Definition 2.4. Two random variable $X$ and $Y$ are called conditionally independent given an event $A$ (with positive probability), if

$$
\begin{equation*}
P(X=x, Y=y \mid A)=P(X=x \mid A) P(Y=y \mid A), \tag{9}
\end{equation*}
$$

or in different notation,

$$
\begin{equation*}
p_{X, Y \mid A}(x, y)=p_{X \mid A}(x) p_{Y \mid A}(y) \tag{10}
\end{equation*}
$$

Now let's look at the expectation of the product of two random variables. In fact, if $X$ and $Y$ are independent, than

$$
\begin{equation*}
\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y] . \tag{11}
\end{equation*}
$$

We will prove this fact:

$$
\begin{aligned}
\mathbf{E}[X Y] & =\sum_{x, y} x y p_{X, Y}(x, y)= \\
& =\sum_{x} \sum_{y} x y p_{X}(x) p_{Y}(y)= \\
& =\sum_{x} x p_{X}(x) \sum_{y} y p_{Y}(y)= \\
& =\mathbf{E}[X] \mathbf{E}[Y] .
\end{aligned}
$$

Similar calculations show that

$$
\begin{equation*}
\mathbf{E}[g(X) h(Y)]=\mathbf{E}[g(X)] \mathbf{E}[h(Y)] . \tag{12}
\end{equation*}
$$

Now, assume $Z=X+Y$. We know that $\mathbf{E}[Z]=\mathbf{E}[X]+\mathbf{E}[Y]$. Now we will compute the variance of $Z$, assuming that $X$ and $Y$ are independent.

$$
\begin{aligned}
\operatorname{var}(Z) & =\mathbf{E}\left[(X+Y-\mathbf{E}[X+Y])^{2}\right]= \\
& =\mathbf{E}\left[((X-\mathbf{E}[X])+(Y-\mathbf{E}[Y]))^{2}\right]= \\
& =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]+\mathbf{E}\left[(Y-\mathbf{E}[Y])^{2}\right]+2 \mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]
\end{aligned}
$$

Since $X$ and $Y$ are independent, we have:

$$
\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]=\mathbf{E}[(X-\mathbf{E}[X])] \mathbf{E}[(Y-\mathbf{E}[Y])]=0
$$

, and therefore

$$
\begin{equation*}
\operatorname{var}(Z)=\operatorname{var}(X)+\operatorname{var}(Y) \tag{13}
\end{equation*}
$$

We can generalize the notion of independence to the case of more than 2 random variables. For example, three random variables $X, Y$, and $Z$ are called independent if

$$
\begin{equation*}
p_{X, Y, Z}(x, y, z)=p_{X}(x) p_{Y}(y) p_{Z}(z) \tag{14}
\end{equation*}
$$

Also, if three or more variables $X_{i}$ are independent, then

$$
\begin{equation*}
\operatorname{var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{var}\left(X_{1}\right)+\cdots+\operatorname{var}\left(X_{n}\right) . \tag{15}
\end{equation*}
$$

Example 2.5 (Variance of binomial random variable). As we saw before, binomial random variable $X$ with parameters $n$ and $p$ can be represented as a sum of $n$ Bernoulli random variables $X_{i}$ with parameter $p$. Since the variance of Bernoulli r.v. is equal to $\operatorname{var}\left(X_{i}\right)=p(1-p)$, we have

$$
\begin{equation*}
\operatorname{var}(X)=n p(1-p) \tag{16}
\end{equation*}
$$

Example 2.6 (Mean and variance of the sample mean). Assume we would like to estimate the approval rating of the president. We ask $n$ people, and let $X_{i}$ be the random variable which denotes the choice of $i$ 'th person:

$$
X_{i}= \begin{cases}1, & \text { if person approves the president's performance } \\ 0, & \text { if person does not approve the president's performance }\end{cases}
$$

We model variables $X_{i}$ as independent Bernoulli random variable with common mean $p$ and variance $p(1-p)$. We view $p$ as a real approval rating of the president. We average the responses and compute the sample mean

$$
\begin{equation*}
S_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \tag{17}
\end{equation*}
$$

We have:

$$
\begin{equation*}
\mathbf{E}\left[S_{n}\right]=\frac{1}{n}\left(\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]\right)=\frac{1}{n} \cdot n p=p \tag{18}
\end{equation*}
$$

and since $X_{i}{ }^{\prime}$ s are independent,

$$
\begin{equation*}
\operatorname{var}\left(S_{n}\right)=\operatorname{var}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\frac{1}{n^{2}}\left(\operatorname{var}\left(X_{1}\right)+\cdots+\operatorname{var}\left(X_{n}\right)\right)=\frac{p(1-p)}{n} . \tag{19}
\end{equation*}
$$

Therefore, $S_{n}$ is a good estimate for $p$, since it's average is equal to $p$, and it's variance (accuracy) improves as sample size $n$ increases.

