Lecture 9

Andrei Antonenko

Feb 11, 2005

1 Conditioning on Event

Assume we are given a probability model, and we are told that a certain event A occurred. Therefore, we can use the conditional probabilities instead of original. One can talk about conditional PMFs which provide the probabilities of the possible values of a random variable, conditioned on the occurrence of some event. This idea is developed in this section.

The conditional PMF of a random variable X, conditioned on a particular event A with $P(A)>0$, is defined by

$$
\begin{equation*}
p_{X \mid A}(x)=P(X=x \mid A)=\frac{P(\{X=x\} \cap A)}{P(A)} . \tag{1}
\end{equation*}
$$

Since events $\{X=x\} \cap A$ are disjoint for different values of A, we have

$$
P(A)=\sum_{x} P(\{X=x\} \cap A),
$$

and therefore

$$
\sum_{x} p_{X \mid A}(x)=1
$$

Example 1.1. Consider a roll of a fair 6 -sided die. Assume we know that the number obtained was even: $A=\{2,4,6\}$. If X is a random variable, which is equal to a number tossed, we can write the conditional PMF of X :

$$
\begin{aligned}
p_{X \mid A}(x) & =P(X=x \mid \text { roll is even }) \\
& =\frac{P(X=x \text { and roll is even })}{P(\text { roll is even })} \\
& = \begin{cases}1 / 3, & \text { if } x=2,4,6 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

2 Conditioning on another random variable

Assume we are conducting an experiment, and there are several (two) random variables associated with this experiment, X and Y. We might be given some information about the value of one of them, say we know that $Y=y$. This information might change our beliefs about X,
and affect its distribution. Formally, we will define a conditional PMF of X given Y, as the conditional probability that $X=x$ given that $Y=y$:

$$
\begin{equation*}
p_{X \mid Y}(x \mid y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} . \tag{2}
\end{equation*}
$$

For any fixed value of $Y=y$, we can consider $p_{X \mid Y}(x \mid y)$ as a function of x. This function is a valid PMF for X. It assigns nonnegative values to all possible x, and all of them add up to 1 .

The conditional PMF is often convenient to use to calculate joint PMF:

$$
\begin{equation*}
p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y) . \tag{3}
\end{equation*}
$$

Example 2.1. Consider 4 rolls of a fair 6 -sided die. Let X be the number of 1's, and Y be the number of 2's. We will find the joint probability mass function of X and Y.

Since Y is a number of 2's, and the probability of getting 2 is $1 / 6, Y$ has a binomial distribution with parameters $n=4$ and $p=1 / 6$:

$$
p_{Y}(y)=\binom{4}{y}\left(\frac{1}{6}\right)^{y}\left(\frac{5}{6}\right)^{4-y} .
$$

Now let's fix the value $Y=y$ - number of 2's obtained in 4 rolls. For 1's we have $4-y$ rolls left, and the probability of getting 1 is $1 / 5$, since now we have only 5 possibilities: $1,3,4,5$, and 6. Therefore, given the value $Y=y, X$ has a binomial distribution with parameters $n=4-y$ and $p=1 / 5$:

$$
p_{X \mid Y}(x \mid y)=\binom{4-y}{x}\left(\frac{1}{5}\right)^{x}\left(\frac{4}{5}\right)^{4-y-x} .
$$

Multiplying the two expressions above, we get the joint distribution of X and Y :

$$
p_{X, Y}(x, y)=p_{Y}(y) p_{X \mid Y}(x \mid y)=\binom{4}{y}\left(\frac{1}{6}\right)^{y}\left(\frac{5}{6}\right)^{4-y}\binom{4-y}{x}\left(\frac{1}{5}\right)^{x}\left(\frac{4}{5}\right)^{4-y-x}
$$

The marginal distribution of X was defined as

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)
$$

If we substitute the expression for $p_{X, Y}(x, y)$, we get:

$$
\begin{equation*}
p_{X}(x)=\sum_{y} p_{X \mid Y}(x \mid y) p_{Y}(y) \tag{4}
\end{equation*}
$$

which is the equivalent of total probability theorem for random variables.
Example 2.2. Assume X is a travel time of the message, and Y is a length of message. Y can be equal to 100 with probability $5 / 6$ and to 10,000 with probability $1 / 6$ (short messages and long messages), therefore

$$
p_{Y}(y)= \begin{cases}5 / 6, & \text { if } y=100 \\ 1 / 6, & \text { if } y=10,000\end{cases}
$$

Now assume that the transmission time of the message depends on Y and equal to ($Y / 10,000$) with probability $1 / 2,(Y / 1,000)$ with probability $1 / 3$, and $(Y / 100)$ with probability $1 / 6$ (network may be busy, and in this case the transmission time is longer). Therefore, assuming the message is short $(Y=100)$, we have:

$$
p_{X \mid Y}(x \mid 100)= \begin{cases}1 / 2, & \text { if } x=100 / 10,000=1 / 100 \mathrm{sec} \\ 1 / 3, & \text { if } x=100 / 1,000=1 / 10 \mathrm{sec} \\ 1 / 6, & \text { if } x=100 / 100=1 \mathrm{sec}\end{cases}
$$

Now, assuming the message is long $(Y=10,000)$, we get:

$$
p_{X \mid Y}(x \mid 10,000)= \begin{cases}1 / 2, & \text { if } x=10,000 / 10,000=1 \mathrm{sec} \\ 1 / 3, & \text { if } x=10,000 / 1,000=10 \mathrm{sec} \\ 1 / 6, & \text { if } x=10,000 / 100=100 \mathrm{sec}\end{cases}
$$

Now we can compute the (unconditional) distribution of the transmission time of the message:

$$
\begin{aligned}
p_{X}\left(\frac{1}{100}\right) & =p_{X \mid Y}\left(\left.\frac{1}{100} \right\rvert\, Y=100\right) p_{Y}(100)+p_{X \mid Y}\left(\left.\frac{1}{100} \right\rvert\, Y=10,000\right) p_{Y}(10,000) \\
& =\frac{1}{2} \cdot \frac{5}{6}+0 \cdot \frac{1}{6}=\frac{1}{2} \cdot \frac{5}{6} \\
p_{X}\left(\frac{1}{10}\right) & =p_{X \mid Y}\left(\left.\frac{1}{10} \right\rvert\, Y=100\right) p_{Y}(100)+p_{X \mid Y}\left(\left.\frac{1}{10} \right\rvert\, Y=10,000\right) p_{Y}(10,000) \\
& =\frac{1}{3} \cdot \frac{5}{6}+0 \cdot \frac{1}{6}=\frac{1}{3} \cdot \frac{5}{6} \\
p_{X}(1) & =p_{X \mid Y}(1 \mid Y=100) p_{Y}(100)+p_{X \mid Y}(1 \mid Y=10,000) p_{Y}(10,000) \\
& =\frac{1}{6} \cdot \frac{5}{6}+\frac{1}{2} \cdot \frac{1}{6} \\
p_{X}(10) & =p_{X \mid Y}(10 \mid Y=100) p_{Y}(100)+p_{X \mid Y}(10 \mid Y=10,000) p_{Y}(10,000) \\
& =0 \cdot \frac{5}{6}+\frac{1}{3} \cdot \frac{1}{6}=\frac{1}{3} \cdot \frac{1}{6} \\
p_{X}(100) & =p_{X \mid Y}(100 \mid Y=100) p_{Y}(100)+p_{X \mid Y}(100 \mid Y=10,000) p_{Y}(10,000) \\
& =0 \cdot \frac{5}{6}+\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{6} \cdot \frac{1}{6}
\end{aligned}
$$

3 Conditional expectation

Assuming we have information that the event A happened. In this case, the expectation of X can be substituted with the conditional expectation, conditioned on the occurrence of the event A :

$$
\begin{equation*}
\mathbf{E}[X \mid A]=\sum_{x} x p_{X \mid A}(x \mid A) \tag{5}
\end{equation*}
$$

For example, in case of a roll of a 6 -sided die, we have:

$$
\mathbf{E}[X]=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\frac{1}{6} \cdot 3+\frac{1}{6} \cdot 4+\frac{1}{6} \cdot 5+\frac{1}{6} \cdot 6=3.5 .
$$

Assume we know that the number rolled was even (event A). In this case, using PMF from the example 1.1, we have conditional expectation:

$$
\mathbf{E}[X \mid A]=\frac{1}{3} \cdot 2+\frac{1}{3} \cdot 4+\frac{1}{3} \cdot 6=4 .
$$

If instead of the event A we are given, that the value of the other random variable Y is y : $Y=y$, we can define conditional expectation as

$$
\mathbf{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y) .
$$

We will see some properties of the conditional expectation in the next lecture.

