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1 Commonly used discrete random variables

1.1 Poisson random variable

Consider the random variable with the following PMF:

pX(k) = e−λ λk

k!
, k = 0, 1, 2, . . . (1)

where λ is a given positive number. This random variable is called a Poisson random variable
with parameter λ. It is easy to verify, that sum of the values of the PMF is equal to 1:

∞∑

k=0

(
e−λ λk

k!

)
= e−λ

(
1 + λ +

λ2

2!
+ . . .

)
= e−λeλ = 1.

This random variable can be used as a good approximation for a binomial random variable
with large n and small p. In order to do that we should assign λ = np. In this case,

e−λ λk

k!
≈ n!

(n− k)!k!
pk(1− p)n−k, k = 0, 1, 2, . . . , n. (2)

For example, if n = 100 and p = 0.01, λ = np = 1, and, say, for k = 5, we have:

100!

95!5!
(0.01)5(1− 0.01)95 ≈ 0.00290;

e−1 1

5!
≈ 0.00306.

For example, the Poisson random variable can be used for a number of the accidents in the
big city. In this case, n – the number of cars is large, and p – probability of an accident (for an
individual car) is small. We will work with Poisson random variable a lot later in this course.

2 Functions of random variables

Consider the observations of the temperature. Assume, X is a temperature in Fahrenheit. The
corresponding temperature in Celsius is given by the following formula:

Y = g(X) = (X − 32) · 5

9
.
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In this case Y is a linear function of X. In general, we can consider any function g, not
necessarily linear. If X is a random variable, then Y = g(X) is also a random variable, since it
also provides a numeric value for the outcome of the experiment. If X is discrete with PMF pX ,
then Y is also discrete, and its PMF pY can be calculated using the PMF of X. In particular,
to obtain pY (y) for any y, we add the probabilities of all values of x such that g(x) = y:

pY (y) =
∑

{x|g(x)=y}
pX(x).

Example 2.1. Consider a random variable which takes integer values from −2 to 2 with equal
probabilities 1/5. The PMF of this r.v. is

pX(x) =
1

5
, x = −2,−1, 0, 1, 2.

Now let Y = |X|. The possible values for Y in this case are 0, 1, and 2. To compute pY (y)
for some given value y from this range, we must add pX(x) over all values x such that |x| = y.
In particular, there is only one value of X that corresponds to y = 0, namely x = 0. Thus,
pY (0) = pX(0) = 1/5. Also, there are two values of X that correspond to each y = 1, 2, so for
example, pY (1) = pX(−1) + pX(1) = 2/5. Thus, the PMF of Y is

pY (y) =





1/5, if y = 0;
2/5, if y = 1;
2/5, if y = 2;

0, otherwise.

For another related example, let Z = X2. By applying the formula pZ(z) =
∑

{x|x2=z} pX(x),
we obtain

pZ(z) =





1/5, if z = 0;
2/5, if z = 1;
2/5, if z = 4;

0, otherwise.

3 Expectation and variance

Assume you are spinning a wheel of fortune. This wheel has numbers m1,m2, . . .mn which
occur with probabilities p1, p2, . . . , pn. Each time you get the number mi, you get mi dollars.
How much money do you expect to win on average?

Assume you spin the wheel some large number of times k, and out of these k spins, you get
number mi ki times for each i. The amount of money you win during all these k spins is then
m1k1 + m2k2 + · · ·+ mnkn, and the average amount you win per spin is

m1k1 + m2k2 + · · ·+ mnkn

k
= m1

k1

k
+ m2

k2

k
+ · · ·+ mn

kn

k
.

The numbers
ki

k
are close to the probabilities pi of getting the number mi:

pi ≈ ki

k
.
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Thus, the average amount you win per spin is approximately equal to

m1p1 + m2p2 + · · ·+ mnpn.

This gives us the motivation to the following definitions:

Definition 3.1. The expectation (or expected value, or mean) of the random variable X
with PMF pX(x) is

E [X] =
∑

x

xpX(x). (3)

Let’s notice that the expectation might not be well defined, in case we are dealing with
random values with infinite (but countable) range. For example, if the random variable takes
values 2k, k = 1, 2, 3, . . . with probabilities 2−k, the formula for expectation gives

∞∑

k=1

2k · 2−k =
∞∑

k=1

1,

which is not convergent series.

Example 3.2. Consider a sequence of 2 tosses of a biased coin with probability of head equal
to p. If X is a random variable equal to the number of heads in the sequence, the PMF of X is

pX(x) =





p2 if x = 2
2 · p(1− p) if x = 1
(1− p)2 if x = 0

Therefore, the expected number of heads is

E [X] = 2 · p2 + 1 · 2p(1− p) + 0 · (1− p)2 = 2p2 + 2p− 2p2 = 2p.

For example, in case of a fair coin, p = 1/2, and the expected number of heads by the argument
above will be equal to 1.

Along with computing the expected value of X, we might be interested in computing the
expectation of X2, and more generally, expectation of Xn for any n.

Definition 3.3. The value E [Xn] is called n-th moment of X.

The second most important characteristics of random variable is its variance.

Definition 3.4. The variance of a random variable X is var (X) = E [(X − E [X])2]. The
standard deviation of X is σX =

√
var (X).

Example 3.5. For a random variable from the previous example,

E [X] =
1

5
· (−2) +

1

5
· (−1) +

1

5
· 0 +

1

5
· 1 +

1

5
· 2 = 0;

(X − E [X])2 = X2;

E
[
X2

]
=

1

5
· 0 +

2

5
· 1 +

2

5
· 4 = 2,

where in the last formula we used the PMF of Z = X2, computed above.
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There is a useful fact which can be used to compute the expectation of the function of a
random variable:

E [g(X)] =
∑

x

g(x)pX(x), (4)

therefore,

E [Xn] =
∑

x

xnpX(x). (5)

Example 3.6. For a random variable from the previous example its second moment can be
computed as

E
[
X2

]
=

∑
x

x2pX(x) =
1

5
· 4 +

1

5
· 1 +

1

5
· 0 +

1

5
· 1 +

1

5
· 4 = 2.

From the definition of variance one can see that it is always nonnegative. In case the variance
is equal to 0, we have

(x− E [X])2pX(x) = 0

for every x, and thus x = E [X] for any x where pX(x) > 0. It means that X is a random
variable, which takes value E [X] with probability 1.

Next, we will obtain the formulae for the expectation and variance of Y = aX + b.

E [Y ] =
∑

x

(ax + b)pX(x)

= a
∑

x

xpX(x) + b
∑

x

pX(x)

= aE [X] + b.

var (Y ) =
∑

x

(ax + b− E [ax + b])2pX(x)

=
∑

x

(ax + b− aE [X]− b)2pX(x)

= a2
∑

x

(x− E [X])2pX(x)

= a2var (X) .

Therefore,
E [aX + b] = aE [X] + b, (6)

and
var (aX + b) = a2var (X) . (7)
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Now we will obtain important formula for the variance:

var (X) =
∑

x

(x− E [X])2pX(x)

=
∑

x

(x2 − 2xE [X] + (E [X])2)pX(x)

=
∑

x

x2pX(x)− 2E [X]
∑

x

xpX(x) +
∑

x

(E [X])2pX(x)

= E
[
X2

]− 2(E [X])2 + (E [X])2

= E
[
X2

]− (E [X])2.

Thus, the formula is:
var (X) = E

[
X2

]− (E [X])2. (8)

To see the use of this formula, let’s compute the expectation and the variance of the Bernoulli
random variable. If X is a Bernoulli random variable, we have

E [X] = 1 · p + 0 · (1− p) = p;

E
[
X2

]
= 12 · p + 02 · (1− p) = p;

var (X) = E
[
X2

]− (E [X])2 = p− p2 = p(1− p).
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