Lecture 7

Andrei Antonenko

Feb 07, 2005

1 Commonly used discrete random variables

1.1 Poisson random variable

Consider the random variable with the following PMF:

$$
\begin{equation*}
p_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where λ is a given positive number. This random variable is called a Poisson random variable with parameter λ. It is easy to verify, that sum of the values of the PMF is equal to 1 :

$$
\sum_{k=0}^{\infty}\left(e^{-\lambda} \frac{\lambda^{k}}{k!}\right)=e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2!}+\ldots\right)=e^{-\lambda} e^{\lambda}=1
$$

This random variable can be used as a good approximation for a binomial random variable with large n and small p. In order to do that we should assign $\lambda=n p$. In this case,

$$
\begin{equation*}
e^{-\lambda} \frac{\lambda^{k}}{k!} \approx \frac{n!}{(n-k)!k!} p^{k}(1-p)^{n-k}, \quad k=0,1,2, \ldots, n \tag{2}
\end{equation*}
$$

For example, if $n=100$ and $p=0.01, \lambda=n p=1$, and, say, for $k=5$, we have:

$$
\begin{aligned}
\frac{100!}{95!5!}(0.01)^{5}(1-0.01)^{95} & \approx 0.00290 \\
e^{-1} \frac{1}{5!} & \approx 0.00306
\end{aligned}
$$

For example, the Poisson random variable can be used for a number of the accidents in the big city. In this case, n - the number of cars is large, and p - probability of an accident (for an individual car) is small. We will work with Poisson random variable a lot later in this course.

2 Functions of random variables

Consider the observations of the temperature. Assume, X is a temperature in Fahrenheit. The corresponding temperature in Celsius is given by the following formula:

$$
Y=g(X)=(X-32) \cdot \frac{5}{9}
$$

In this case Y is a linear function of X. In general, we can consider any function g, not necessarily linear. If X is a random variable, then $Y=g(X)$ is also a random variable, since it also provides a numeric value for the outcome of the experiment. If X is discrete with PMF p_{X}, then Y is also discrete, and its PMF p_{Y} can be calculated using the PMF of X. In particular, to obtain $p_{Y}(y)$ for any y, we add the probabilities of all values of x such that $g(x)=y$:

$$
p_{Y}(y)=\sum_{\{x \mid g(x)=y\}} p_{X}(x)
$$

Example 2.1. Consider a random variable which takes integer values from -2 to 2 with equal probabilities $1 / 5$. The PMF of this r.v. is

$$
p_{X}(x)=\frac{1}{5}, \quad x=-2,-1,0,1,2
$$

Now let $Y=|X|$. The possible values for Y in this case are 0,1 , and 2 . To compute $p_{Y}(y)$ for some given value y from this range, we must add $p_{X}(x)$ over all values x such that $|x|=y$. In particular, there is only one value of X that corresponds to $y=0$, namely $x=0$. Thus, $p_{Y}(0)=p_{X}(0)=1 / 5$. Also, there are two values of X that correspond to each $y=1,2$, so for example, $p_{Y}(1)=p_{X}(-1)+p_{X}(1)=2 / 5$. Thus, the PMF of Y is

$$
p_{Y}(y)=\left\{\begin{aligned}
1 / 5, & \text { if } y=0 \\
2 / 5, & \text { if } y=1 \\
2 / 5, & \text { if } y=2 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

For another related example, let $Z=X^{2}$. By applying the formula $p_{Z}(z)=\sum_{\left\{x \mid x^{2}=z\right\}} p_{X}(x)$, we obtain

$$
p_{Z}(z)=\left\{\begin{aligned}
1 / 5, & \text { if } z=0 \\
2 / 5, & \text { if } z=1 \\
2 / 5, & \text { if } z=4 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

3 Expectation and variance

Assume you are spinning a wheel of fortune. This wheel has numbers $m_{1}, m_{2}, \ldots m_{n}$ which occur with probabilities $p_{1}, p_{2}, \ldots, p_{n}$. Each time you get the number m_{i}, you get m_{i} dollars. How much money do you expect to win on average?

Assume you spin the wheel some large number of times k, and out of these k spins, you get number $m_{i} k_{i}$ times for each i. The amount of money you win during all these k spins is then $m_{1} k_{1}+m_{2} k_{2}+\cdots+m_{n} k_{n}$, and the average amount you win per spin is

$$
\frac{m_{1} k_{1}+m_{2} k_{2}+\cdots+m_{n} k_{n}}{k}=m_{1} \frac{k_{1}}{k}+m_{2} \frac{k_{2}}{k}+\cdots+m_{n} \frac{k_{n}}{k}
$$

The numbers $\frac{k_{i}}{k}$ are close to the probabilities p_{i} of getting the number m_{i} :

$$
p_{i} \approx \frac{k_{i}}{k}
$$

Thus, the average amount you win per spin is approximately equal to

$$
m_{1} p_{1}+m_{2} p_{2}+\cdots+m_{n} p_{n}
$$

This gives us the motivation to the following definitions:
Definition 3.1. The expectation (or expected value, or mean) of the random variable X with PMF $p_{X}(x)$ is

$$
\begin{equation*}
\mathbf{E}[X]=\sum_{x} x p_{X}(x) \tag{3}
\end{equation*}
$$

Let's notice that the expectation might not be well defined, in case we are dealing with random values with infinite (but countable) range. For example, if the random variable takes values $2^{k}, k=1,2,3, \ldots$ with probabilities 2^{-k}, the formula for expectation gives

$$
\sum_{k=1}^{\infty} 2^{k} \cdot 2^{-k}=\sum_{k=1}^{\infty} 1
$$

which is not convergent series.
Example 3.2. Consider a sequence of 2 tosses of a biased coin with probability of head equal to p. If X is a random variable equal to the number of heads in the sequence, the PMF of X is

$$
p_{X}(x)= \begin{cases}p^{2} & \text { if } x=2 \\ 2 \cdot p(1-p) & \text { if } x=1 \\ (1-p)^{2} & \text { if } x=0\end{cases}
$$

Therefore, the expected number of heads is

$$
\mathbf{E}[X]=2 \cdot p^{2}+1 \cdot 2 p(1-p)+0 \cdot(1-p)^{2}=2 p^{2}+2 p-2 p^{2}=2 p
$$

For example, in case of a fair coin, $p=1 / 2$, and the expected number of heads by the argument above will be equal to 1 .

Along with computing the expected value of X, we might be interested in computing the expectation of X^{2}, and more generally, expectation of X^{n} for any n.

Definition 3.3. The value $\mathbf{E}\left[X^{n}\right]$ is called n-th moment of X.
The second most important characteristics of random variable is its variance.
Definition 3.4. The variance of a random variable X is $\operatorname{var}(X)=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]$. The standard deviation of X is $\sigma_{X}=\sqrt{\operatorname{var}(X)}$.
Example 3.5. For a random variable from the previous example,

$$
\begin{aligned}
& \mathbf{E}[X]=\frac{1}{5} \cdot(-2)+\frac{1}{5} \cdot(-1)+\frac{1}{5} \cdot 0+\frac{1}{5} \cdot 1+\frac{1}{5} \cdot 2=0 \\
& (X-\mathbf{E}[X])^{2}=X^{2} ; \\
& \mathbf{E}\left[X^{2}\right]=\frac{1}{5} \cdot 0+\frac{2}{5} \cdot 1+\frac{2}{5} \cdot 4=2,
\end{aligned}
$$

where in the last formula we used the PMF of $Z=X^{2}$, computed above.

There is a useful fact which can be used to compute the expectation of the function of a random variable:

$$
\begin{equation*}
\mathbf{E}[g(X)]=\sum_{x} g(x) p_{X}(x) \tag{4}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
\mathbf{E}\left[X^{n}\right]=\sum_{x} x^{n} p_{X}(x) \tag{5}
\end{equation*}
$$

Example 3.6. For a random variable from the previous example its second moment can be computed as

$$
\mathbf{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)=\frac{1}{5} \cdot 4+\frac{1}{5} \cdot 1+\frac{1}{5} \cdot 0+\frac{1}{5} \cdot 1+\frac{1}{5} \cdot 4=2
$$

From the definition of variance one can see that it is always nonnegative. In case the variance is equal to 0 , we have

$$
(x-\mathbf{E}[X])^{2} p_{X}(x)=0
$$

for every x, and thus $x=\mathbf{E}[X]$ for any x where $p_{X}(x)>0$. It means that X is a random variable, which takes value $\mathbf{E}[X]$ with probability 1 .

Next, we will obtain the formulae for the expectation and variance of $Y=a X+b$.

$$
\begin{aligned}
\mathbf{E}[Y] & =\sum_{x}(a x+b) p_{X}(x) \\
& =a \sum_{x} x p_{X}(x)+b \sum_{x} p_{X}(x) \\
& =a \mathbf{E}[X]+b . \\
\operatorname{var}(Y) & =\sum_{x}(a x+b-\mathbf{E}[a x+b])^{2} p_{X}(x) \\
& =\sum_{x}(a x+b-a \mathbf{E}[X]-b)^{2} p_{X}(x) \\
& =a^{2} \sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x) \\
& =a^{2} \operatorname{var}(X) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\mathbf{E}[a X+b]=a \mathbf{E}[X]+b \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X) \tag{7}
\end{equation*}
$$

Now we will obtain important formula for the variance:

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x) \\
& =\sum_{x}\left(x^{2}-2 x \mathbf{E}[X]+(\mathbf{E}[X])^{2}\right) p_{X}(x) \\
& =\sum_{x} x^{2} p_{X}(x)-2 \mathbf{E}[X] \sum_{x} x p_{X}(x)+\sum_{x}(\mathbf{E}[X])^{2} p_{X}(x) \\
& =\mathbf{E}\left[X^{2}\right]-2(\mathbf{E}[X])^{2}+(\mathbf{E}[X])^{2} \\
& =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} .
\end{aligned}
$$

Thus, the formula is:

$$
\begin{equation*}
\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} . \tag{8}
\end{equation*}
$$

To see the use of this formula, let's compute the expectation and the variance of the Bernoulli random variable. If X is a Bernoulli random variable, we have

$$
\begin{aligned}
\mathbf{E}[X] & =1 \cdot p+0 \cdot(1-p)=p \\
\mathbf{E}\left[X^{2}\right] & =1^{2} \cdot p+0^{2} \cdot(1-p)=p \\
\operatorname{var}(X) & =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=p-p^{2}=p(1-p) .
\end{aligned}
$$

