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1 Conditional independence

As we saw in previous lectures, conditional probabilities form a probability law. We can gen-
eralize a notion of independence of events to the case of conditional probabilities.

Definition 1.1. Given an event C, two events A and B are called conditionally indepen-
dent, if

P (A ∩B|C) = P (A|C)P (B|C). (1)

This definitional is parallel with the definition of the conditional probability given before:
P (A∩B) = P (A)P (B). From the definition of conditional probability and multiplication rule,
we get:

P (A ∩B|C) =
P (A ∩B ∩ C)

P (C)
=

=
P (C)P (B|C)P (A|B ∩ C)

P (C)
=

= P (B|C)P (A|B ∩ C).

Combining the last equality with the definition of conditionally independent events, we obtain:

P (A|C) = P (A|B ∩ C). (2)

In words, this relation states that if C is known to have occurred, the additional knowledge
whether B occurred or not, does not alter the probability of A.

The following examples will show, that independence of two events A and B (unconditional)
does not imply conditional independence, and vice versa.

Example 1.2. Consider an experiment, consisting of 2 tosses of a fair coin. The events we
are interested in are:

H1 = {1st toss resulted in H} = {HH, HT} P (H1) =
1

2
;

H2 = {2nd toss resulted in H} = {HH, TH} P (H2) =
1

2
;

D = {1st and 2nd tosses had different outcomes} = {HT, TH} P (D) =
1

2
.
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Obviously, the events H1 and H2 are independent. Let’s check whether they are conditionally
independent.

P (H1|D) =
P (H1 ∩D)

P (D)
=

1/4

1/2
= 1/2;

P (H2|D) =
P (H2 ∩D)

P (D)
=

1/4

1/2
= 1/2;

P (H1 ∩H2|D) =
P (H1 ∩H2 ∩D)

P (D)
=

0

1/2
= 0.

Therefore, since P (H1|D)P (H2|D) 6= P (H1 ∩ H2|D), events H1 and H2 are not conditionally
independent.

Example 1.3. There are two coins: Red and Blue. At the beginning we choose a random coin
with probability 1/2, and than make 2 tosses. The coins are biased: the Red coin results in H
with probability 0.99, and the Blue coin results in H with probability 0.01. Let events H1 and
H2 be the same as in previous example. Let B be the event of selecting Blue coin, and R be the
event of selecting Red coin.

Given the choice of a coin, the events H1 and H2 are independent, because tosses are inde-
pendent. So,

P (H1 ∩H2|R) = P (H1|R)P (H2|R).

Thus, the events H1 and H2 are conditionally independent, given choice of the coin.
Now, let’s check whether these events are (unconditionally) independent. By law of total

probability, we can obtain:

P (H1) = P (H1|R)P (R) + P (H1|B)P (B) =

= 0.99 · 1

2
+ 0.01 · 1

2
=

1

2
;

P (H2) = P (H2|R)P (R) + P (H2|B)P (B) =

= 0.99 · 1

2
+ 0.01 · 1

2
=

1

2
;

P (H1 ∩H2) = P (H1 ∩H2|R)P (R) + P (H1 ∩H2|B)P (B) =

= 0.99 · 0.99 · 1

2
+ 0.01 · 0.01 · 1

2
≈ 1

2
.

So, we see that P (H1 ∩H2) 6= P (H1)P (H2), and thus events H1 and H2 are not independent.

2 Counting

Assume the sample space of the experiment Ω is finite, and all the outcomes are equally likely
to happen. In this case, for any event A,

P (A) =
number of elements in A

number of elements in Ω
. (3)

The problem of finding the number of elements in A and in Ω is not necessarily an easy one.
In this section we will discuss ways of counting, which can help in solving several problems.
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2.1 Counting principle

Consider a multistage process with r stages. Assume, there are n1 outcomes of the 1st stage.
For each of the outcomes of the 1st stage, there are n2 possible outcomes of the 2nd stage. For
any possible outcomes of the first two stages there are n3 possible outcomes of the 3rd stage,
etc, and for any possible outcomes of the first r − 1 stages there are nr possible outcomes of
the rth stage. Schematically,

Stage1: n1

Stage2: n2 Stage3: n3 Stage_r: n_r

In this case the total number of possible outcomes of such a process is equal to

n1 · n2 · n3 . . . nr.

Example 2.1. What is the total number of phone numbers in a given area code? The first digit
can be chosen in 8 different ways (0 and 1 can not be first digits of the phone number), for any
choice of the first digit, the second digit can be chosen in 10 different ways, etc. Thus the total
number of phone numbers is

8 · 10 · 10 . . . 10︸ ︷︷ ︸
6 times

Example 2.2. Assume a set A has n elements. What is the total number of subsets of the set
A?

For the first element of A we have 2 choices: include it into the subset or not, the same
happens for the second element, etc. Thus, the total number of subsets is

2 · 2 . . . 2︸ ︷︷ ︸
n times

= 2n.
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2.2 Permutations

Assumer there are n objects, and assume k ≤ n. What is the total number of different k-object
sequences? These sequences are called k-permutations.

We have n choices for the 1st elements of the sequence, n− 1 choices for the 2nd element of
the sequence, etc., and n− k + 1 choices for the kth element of the sequence. Thus, the total
number of sequences is

n(n− 1) . . . (n− k + 1) =
n!

(n− k)!
,

where n! is defined as
n! = 1 · 2 · 3 . . . (n− 1) · n. (4)

Example 2.3. What is the number of words, consisting of 4 different letters?
The English alphabet has 26 letters, and we need to count all 4 letter sequences. This number

of sequences is equal to
26!

(26− 4)!
=

26!

22!
= 26 · 25 · 24 · 23.

Example 2.4. Assume you have a CD collection with n1 CDs with classical music, n2 CDs
with rock music, and n3 CDs with pop music. You want to arrange your collection on the shelf,
putting all CDs of the same genre together. How many ways do you have to do it?

CDs with classical music can be arranged in n1! different ways, CDs with rock music can be
arranged in n2! different ways, and CDs with pop music can be arranged in n3! different ways.
The three groups on the shelf can be arranged in 3! different ways. Thus, the total number of
arrangements is equal to

3! · n1! · n2! · n3!

2.3 Combinations

Assume the set A consists of n elements. What is the total number of k-element subsets of A?
The difference between combinations and permutations is that in the combinations there is

no ordering of its elements. For example, if A = {a, b, c, d}, then the 2-letter permutations are

ab, ac, ad, ba, ca, da, bc, bd, cb, db, cd, dc,

and combinations are
ab, ac, ad, bc, bd, cd.

Let’s note that selecting a permutation is the same as selecting a combination and ordering
its elements. If k is the size of permutation/combination, then there are k! orderings, and thus

# of permutations = k! ·# of combinations.

Therefore, the number of combinations of the size k is given by the following formula:

(
n

k

)
=

n!

(n− k)!k!
. (5)

These numbers are called binomial coefficients, and are read as “n choose k.”
There are several interesting identities about binomial coefficients worth mentioning.
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The total number of subsets of the n-element set is (as we saw before) 2n. In another way,
the total number of subsets is equal to total number of 0 element subsets, total number of
1-element subsets, total number of 2-element subsets, etc. Thus, we get the following identity:

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n,

or
n∑

k=0

(
n

k

)
= 2n. (6)

2.4 Bernoulli trials

Now we will look at the following experiment. Assume we toss a coin n times. The coin has
probability p of a Head and probability (1 − p) of a Tail. That’s an n-stage experiment, with
each stage having exactly 2 outcomes: H or T . Thus, the total number of outcomes in 2n.
They are sequences of T ’s and H’s of the length n.

Schematically, the experiment is represented on the following picture (for the case n = 3).

T

H

H

H

H

H

H

H

T

T

T

T

T

T

p^3

p^2(1−p)

p(1−p)^2

(1−p)^3

p^2(1−p)

p^2(1−p)

p(1−p)^2

p(1−p)^2

What is the probability of each outcome of this event? Assume, the sequence has k heads
and n− k tails. Then, the probability is pk(1− p)n−k.

Assume we would like to compute the probability of getting exactly k heads. This probability
is equal to:

P (k heads) = # of sequences with k heads and (n− k) tails · probability of each such sequence =

= # of sequences with k heads and (n− k) tails · pk(1− p)n−k.

Now, we need to know the total number of sequences with n heads and (n−k) tails. This can
be counted using the formula for number of combinations. We have k out of n slots available for
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Hs. These k slots can be chosen in
(

n
k

)
different ways. Thus, the total number of the sequences

of the length n with exactly k heads is equal to
(

n
k

)
. Therefore, we obtain the following formula:

P (getting exactly k heads out of n tosses) =

(
n

k

)
pk(1− p)n−k. (7)

Such trials, or experiments with exactly two outcomes (like coin tosses) are called Bernoulli
trials. The experiment described above is called a sequence of independent Bernoulli
trials. The probabilities from the equation (7) are called binomial probabilities.

Since all binomial probabilities should add up to 1, we have the following identity:

(
n

0

)
p0(1−p)n +

(
n

1

)
p1(1−p)n−1 +

(
n

2

)
p2(1−p)n−2 + · · ·+

(
n

n− 1

)
pn−1(1−p)1 +

(
n

n

)
pn = 1,

or
n∑

k=0

(
n

k

)
pk(1− p)n−k = 1. (8)
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