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1 Homogeneous systems

Last time we studied linear functions. To continue our theory about them we have to study

another topic, which we will use in our future lectures.

Recall, that the system is called homogeneous, if it has 0’s in the right hand side. The main

fact about them is that each homogeneous system has either 1 or infinitely many solutions;

moreover, if the number of equations is less than the number of variables, then the system has

infinitely many solutions.

We’ll state some properties of the solution set of the homogeneous system.

Existence of 0. (0, 0, . . . , 0) is a solution.

Addition of solutions. Let we have 2 solutions of the homogeneous system, (y1, y2, . . . , yn)

and (y′1, y
′
2, . . . , y

′
n). Then (y1 + y′1, y2 + y′2, . . . , yn + y′n) is a solution. To check it consider

an equation of the system:

ai1x1 + ai2x2 + · · ·+ ainxn = 0.

Since specified n-tuples are solutions, we have:

ai1y1 + ai2y2 + · · ·+ ainyn = 0 and

ai1y
′
1 + ai2y

′
2 + · · ·+ ainy

′
n = 0.

Adding these 2 equations, we have:

ai1(y1 + y′1) + ai2(y2 + y′2) + · · ·+ ain(yn + y′n) = 0,

so, (y1 + y′1, y2 + y′2, . . . , yn + y′n) is a solution.

Multiplication by a number. Let (y1, y2, . . . , yn) be a solution. Then (cy1, cy2, . . . , cyn) is a

solution. To check it consider an equation of the system:

ai1x1 + ai2x2 + · · ·+ ainxn = 0.
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Since specified n-tuples are solutions, we have:

ai1y1 + ai2y2 + · · ·+ ainyn = 0

Multiplying equation by c, we get

ai1(cy1) + ai2(cy2) + · · ·+ ain(cyn) = 0,

so (cy1, cy2, . . . , cyn) is a solution.

So we see, that for any 2 solutions their sum is also a solution, zero is a solution, and for any

solution, constant multiplied by this solution is a solution. So, we get the following theorem:

Theorem 1.1. The solution set of the homogeneous system is a vector space.

Let’s analyze this vector space. I.e. we would like to find its dimension and basis. First we

will show it in the example.

Example 1.2. Consider the following system:





x1 + 2x2 − x3 + 2x4 = 0

2x1 + 5x2 + x3 − x4 = 0

3x1 + 7x2 + x4 = 0

Let’s try to solve it. Subtracting the first equation from the second one and the third one we

get: 



x1 + 2x2 − x3 + 2x4 = 0

x2 + 3x3 − 3x4 = 0

x2 + 3x3 − 3x4 = 0

and the third equation is redundant. Free variables in this system are x3 and x4. Assigning

values x3 = k3 and x4 = k4 we have:

x2 = −3k3 + 3k4

x1 = −2x2 + x3 − 2x4 = 2(−3k3 + 3k4) + k3 − 2k4 = −5k3 + 4k4.

So, the solution set is:

{(−5k3 + 4k4,−3k3 + 3k4, k3, k4) | k3, k4 ∈ R}

Let’s get 2 particular solutions by assigning first k3 = 1, k4 = 0, and then k3 = 0, k4 = 1.

• k3 = 1, k4 = 0: the solution is (−5,−3, 1, 0).

• k3 = 0, k4 = 1: the solution is (4, 3, 0, 1).
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Now we see, that any solution can be expressed as a linear combination of these 2 particular

solutions:

(−5k3 + 4k4,−3k3 + 3k4, k3, k4) = k3(−5,−3, 1, 0) + k4(4, 3, 0, 1).

Moreover, these solutions are linearly independent. To check it let’s form linear combination

which is equal to 0:

x(−5,−3, 1, 0) + y(4, 3, 0, 1) = (0, 0, 0, 0).

Let’s consider the third component and the fourth component. We’ll have x = 0, and y = 0.

So, these vectors are linearly independent. Then these solutions form a basis in the solution

space of the system, and dimension of the solution space is 2.

Now we can state general result for homogeneous systems.

Theorem 1.3. Let’s suppose that the number of free variables in REF of the homogeneous

system is equal to s. Let u1, u2, . . . , us be the solutions obtained by setting one of the free

variables equal to 1, and remaining free variables equal to 0. Then the dimension of the solution

space is s and vectors ui’s form a basis.

Proof. To prove this theorem we have to first prove that these solutions span all solution space,

and that they are independent.

Since the values of leading variables are defined by the free variables, we see, that solution

which has first free variable equal to k1, second free variable equal to k2, etc. till s-th free

variable equal to ks is

k1u1 + k2u2 + · · ·+ ksus

(since in u1 the first free variable equals to 1, and all remaining free variables are equal to 0, in

u2 the second free variable equals to 1, and all remaining free variables are equal to 0, etc.)

Moreover, if k1u1+k2u2+· · ·+k3u3 = 0, then we have k1 = 0, k2 = 0, . . . , ks = 0 (considering

equation corresponding to the first free variable, the second free variable, etc.), and thus vectors

are linearly independent.

So, they form a basis of the solution space, and its dimension is equal to the number of free

variables.

2 Image and kernel

Let we have a linear function: f : U → V , where U and V are vector spaces. We will give 2

definitions associated with this function.

Definition 2.1. Image of f is the set of vectors v from V for which there exists a vector u in

U such that f(u) = v. I.e. it consists of images of all vectors from U . It is denoted by Im f .
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Example 2.2. Let’s consider the projection function f : R3 → R3 such that f(x, y, z) =

(x, y, 0). Then the set of all triplets with the third component equal to 0 is an image of f :

Im f = {(x, y, 0) | x, y ∈ R}.

Definition 2.3. The kernel of f is the set of all elements u from U such that f(u) = 0. It is

denoted by Ker f .

Example 2.4. Let’s consider the projection function f : R3 → R3 such that f(x, y, z) =

(x, y, 0). Then all vectors with first 2 coordinates which are equal to 0 and any third coordinate

form a kernel of f .

Ker f = {(0, 0, z) | z ∈ R},
since f(0, 0, z) = (0, 0, 0) for any z ∈ R.

We’ll consider another example.

Example 2.5. Let’s consider a function of taking a derivative of a polynomial in the space P2,

i.e.

D(a2x
2 + a1x + a0) = 2a2x + a1.

We see that image of this function consists of polynomials of degree 1 or 0, and the kernel

consists of constants — polynomials of degree 0 (only their derivative is equal to 0):

Im D = P1

Ker D = R = P0
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