Lecture 21: Agreement.

Andrei Antonenko

LIN 311: Syntax

November 6, 2018

Outline

Agreement

Review of the Modules So Far Subject-Verb Agreement Features and Interpretability

 Pormal Theory of Features Types of Features Feature Checking

Agreement

A. Antonenko (Syntax)

θ -Theory

There are two modules which we so far considered which limit X-bar theory:

- **θ**-theory
 - Interface with semantics.
 - Verb (and possibly noun) meaning determines how many arguments are there.
 - Rules out things like:
 - (1) a. *Sally kissed.
 - b. *Sue danced waltz tango.

2 Case Theory

Case-Theory

There are two modules which we so far considered which limit X-bar theory:

- **1** θ -theory
- **2** Case Theory
 - Purely syntactic module.
 - Responsible for the correct forms and positions of DPs.
 - Rules out things like:
 - (2) a. *Her loves he.
 - b. *It seems Brett to like beer.

Agreement

However, there are some things which cannot be ruled out by these two modules:

- (3) a. *John love her.
 - b. *I loves him.
 - Verbs must agree with subjects.
 - In English, this pattern is poor:

	Singular		Plural	
1st	1	speak	we	speak
2nd	you	speak	you	speak
3rd	s/he	speak- <mark>s</mark>	they	speak

- Verbs must agree with subjects.
- In Italian, this pattern is more complicated:

	Singular		Plural	
1st	io	parl- <mark>o</mark>	noi	parl- <mark>iamo</mark>
2nd	tu	parl-i	voi	parl- <mark>ate</mark>
3rd	lui/lei	parl- <mark>a</mark>	loro	parl- <mark>ano</mark>

• There is a syntactic dependency between the subject and the verb.

Agreement is meaningless

The agreement suffixes on the verb are meaningless:

- Some English dialects use agreement differently, but mean exact same thing as Standard English speakers:
 - (4) John love-Ø Mary. (African-American English)
 - (5) I walk-s. (West Country English, Somerset, Dorset)
- English speakers can easily understand non-native speakers with agreement mistakes:
 - (6) I walks. $(= I \text{ walk.}, \neq He \text{ walks.})$

Shared features

(7) John plays piano. 3.SG 3.SG

- Both the subject and the verb have 3rd.singular feature on them.
- On the subject, this feature is meaningful: it indicates that John is a singular 3rd person entity.
 - Interpretable feature: $\langle i3sg \rangle$
- On the verb, this feature is meaningless, and occurs as a result of dependency with the subject. We completely ignore it when interpreting the sentence from semantic point of view.
 - Uninterpretable feature: $\langle u3sg \rangle$

Interpretability of features

(8) *I plays piano. $\langle i1.sg \rangle \langle u3.sg \rangle$

There is mismatch of features: $\langle i1.sg \rangle$ and $\langle u3.sg \rangle$ For each uninterpretable feature, there should be a similar interpretable feature. Basically, we don't want to have something that receives no interpretation!

Principle of Interpretability

Any clause in which some element carries an uninterpretable feature $\langle uF \rangle$ requires the presence of a matching interpretable feature $\langle iF \rangle$; otherwise the clause is ungrammatical.

Formal Theory of Features

Tense-features

Let us explore what kind of features the grammar uses.

T-feature

- T carries Tense-features (T-features), unless it's non-finite.
- T-feature on T is interpretable: depending on the value, it situated the event on the time line: (*i*T: ___)
- Non-finite T to has no specification for T-features.
- In English, only present and past are marked on the verb. The future tense is expressed using a modal will.
- T-feature on Verb itself is uninterpretable T-feature, but it comes with a value, which must be transmitted to T: (*u*T: present/past).

φ -features

φ -features

Agreement is also a feature on T.

- It is clear if we have auxiliary verbs: usually they agree with the subject.
- Otherwise, think of Affix hopping: Tense is on T, and it determines which affix the verb has. Verbal affixes depend on T!
- Agreement features (person/number) are called φ -features.
 - φ -features are interpretable on DP: for example, $\langle i\varphi$: 3.sg
 - φ -features are non-interpretable on T: $\langle u\varphi$:
- φ-features are specified similar to T-features, for example, on DP John we have (iφ: 3.sg).

Feature checking

Feature checking: Feature with no value (unvalued) searches for a matching feature below, and acquires its value from it.

• For example, T-feature on T is unvalued, so it will look down, find a V with a valued T-feature, and get its value from it.

Feature checking

Feature checking: Feature with no value (unvalued) searches for a matching feature below, and acquires its value from it.

 For example, φ-feature on T is unvalued, so it will look down, find a subject DP with a valued φ-feature, and get its value from it.

Example: Feature distribution

(9) John loves me: Tree before feature checking.

Example: Feature distribution

(10) John loves me: Feature checking before subject movement to Spec, TP.

Example: Feature distribution

(11) John loves me: Final tree, values have been copied to T.

Subjects agree, but not objects

(12) John loves me: Tree before subject movement to Spec, TP

 T finds subject first, so its φ-features are valued from the subject. That's why subjects agree, and not objects.

Nominative case

We saw that nominative case is only available to subjects of the finite clauses:

- (13) a. John loves me.
 - b. *[John to love me] would be amazing.
 - c. [For John to love me] would be amazing.

How can this be captured in terms of features?

- Idea: Nominative case is an uninterpretable T-feature on DP.
- This idea belongs to Pesetsky & Torrego (2007).
- Before there was an independent $\langle Case \rangle$ -feature...

Case as a T-feature

- (14) He loves John: Feature checking before subject movement to Spec, TP
 - T first enters Agree with the subject, and then with the Verb. As a result, both the T and the subject will get their T-features from V.

A. Antonenko (Syntax)

Case as a T-feature

(15) He loves John: After feature checking; values are copied.

• After copying values, the subject has a valued T-feature, which is pronounced as a nominative case.

A. Antonenko (Syntax)

Feature distribution summary

Main syntactic features						
Element	Features	Туре	Example			
DP	φ -features	interpretable, valued	$\langle i\varphi$: 3.sg \rangle			
	T-features/Case	uninterpretable, unvalued	$\langle uT: \ \rangle$			
V	T-features	uninterpretable, valued	$\langle iT: \mathbf{pres} \rangle$			
Т	T-features/Case	interpretable, unvalued	$\langle i T : _ \rangle$			
	arphi-features	uninterpretable, unvalued	$\langle u\varphi: _ \rangle$			

Searching for a matching feature

Probe-Goal relationship

- Probe: the head with a feature which is searching.
- Goal: whatever is being searched for.

For example, with respect to φ -features, T is a probe, and the subject DP is a goal.

One question left to answer is:

- How do the unvalued features search for valued features?
- Where do Probes look for their Goals?
- To answer this, we need to introduce an important relation between the nodes in the tree: c-command.