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An important part of processing elicited numerical inputs is an ability to quantitatively 
decode natural-language words that are commonly used to express or modify numerical 
values. These include ‘about’, ‘around’, ‘almost’, ‘exactly’, ‘nearly’, ‘below’, ‘at least’, ‘order 
of’, etc., which are collectively known as approximators or numerical hedges. Figuring 
out the quantitative implications of these expressions for the uncertainty of numerical 
quantities is important for being able to understand, for example, what is actually being 
reported by a patient who says a headache has lasted for “about 7 days”, and how 
we should translate the patient’s report into uncertainty about the duration. We used 
Amazon Mechanical Turk to empirically identify the implications of various approximators 
common in English. To evaluate the numerical range implied by each approximator, 
we analyzed paired statements differing only in the approximator used in numerical 
expressions. Despite often considerable diversity, there were several statistically significant 
findings, but far less quantitative variation implied by the approximators than might have 
been expected. The numerical implication of different approximators interacts with the 
magnitude and roundness of the nominal quantity. This investigation strategy generalizes 
easily to languages other than English.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The innate numerical acuity of humans is remarkably poor [16]. Although recognizing and thinking with numbers may 
involve multiple cognitive systems that are not yet fully understood (cf. [11]), laboratory and field observations show that 
without tutoring people typically have a number sense that can distinguish only up to about four items [29]. Human 
societies that have not developed number systems or at least finger counting have difficulty discerning the quantity four 
[26], and humans seem to innately distinguish only the quantities one, two and many, which represents any quantity more 
than two.
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Number systems were invented repeatedly in human history [30], apparently to facilitate commerce, to bring clarity to 
ideas otherwise expressed by words like ‘some’, ‘many’, ‘more’, ‘less’ and ‘fewer’. These systems permit the description of 
quantities with expressions consisting of a numeral and units. The units specify the scale of measurement, which is either a 
count noun (e.g., dollars, days, chairs, bushels, people, acres), or what linguists call a measure word used with a mass noun 
(e.g., kernels of corn, bushels of wheat, liters of water, tanks of gas, rooms of furniture). The numeral represents an integral 
count or real-valued measurement revealing the multiplicity or fractionality of the unit equivalent to the quantity being 
described. The numeral expresses a magnitude, possibly spelled out in words (‘one’, ‘two’, ‘sixty-eight’, ‘three quarters’, etc.) 
or expressed with numerical digits (‘1’, ‘256’, ‘0.5’, etc.).

The clarity of number systems often implies greater precision than is practically achievable in many situations. This fact 
requires some scheme to relax or discount this precision. In linguistics, a hedge is a word or phrase that modifies the force 
or precision of ideas or statements [37]. Hedges serve several purposes in language, including expressing uncertainty or 
transience, stipulation, responsibility focusing, and obfuscation. Prince et al. [50] recognized two kinds of hedges: shields 
and approximators. Shields, such as ‘I think’ or ‘probably’ modify propositions, whereas approximators modify numerals 
to alter the magnitude or precision implied by the expression. The latter function of approximators is to convey that the 
quantity is either less precise or more precise than the meaning of the corresponding numerical quantity without the hedge 
word. For instance, the sentence ‘About 105 people came to the party’ may mean that any number of people between 100 
and 110 came to the party. In contrast, the sentence ‘105 people came to the party’ has a smaller range of possible values 
for the implied number of people attending the party. In this case, the approximator ‘about’ introduces more uncertainty 
into the interpretation of the sentence.

Sometimes uncertainty is implicit in a numerical expression because of the roundness of the number even though no 
explicit hedge words may be present at all. For example, a reasonable interpretation of the phrase ‘1000 people came to the 
protest’ would infer that the number of people who attended the protest is somewhere in the neighborhood of 1000, but 
not necessarily exactly 1000. Comparing that example to a phrase ‘Exactly 1000 people came to the protest’, one can see 
that the hedge ‘exactly’ reduces the uncertainty of the statement: the latter example means that there were exactly 1000 
people at the protest, no more, no less.

In English, quantities are described with expressions generally involving three elements: unit, numeral, and approximator. 
Grammatically, the approximator is an adverb that modifies the numeral which is an adjective which in turn modifies the 
unit which is a noun. The order in which the three elements appear is not fixed in English. For example, the written phrase 
‘$100 or so’ is unit–numeral–approximator, but ‘nearly 5 pounds’ is approximator–numeral–unit, and ‘35 years or more’ 
is numeral–unit–approximator. Sometimes elements may be elided when context or convention allows. The phrase ‘three 
coffees’ omits the unit (measure word) ‘cup’. Mathematicians discuss abstract quantities which are pure, dimensionless 
numbers without units. The idea is not so much that there are no units, but that the numbers represent quantities with 
any units. When the numeral is omitted, it is usually understood to be one, unless context forces another value. Omitting 
the approximator element—using what we might call the null hedge or null approximator—does not usually mean there is 
no imprecision whatever about the quantity. Instead, the value is understood to have a precision implicitly encoded in the 
roundness of the number, the discourse environment (e.g., bank statements versus barroom braggadocio), and measurability 
of the quantity.

There are many approximators in English, including generic hedges such as ‘around’ and ‘nearly’, archaic hedges such as 
‘well-nigh’, and idiomatic constructions such as ‘in the ballpark of’. Some hedges generally appear before the numeral like 
‘around’ and ‘as many as’, and some generally appear after the numeral like ‘or so’ and ‘and change’. Some approximators 
can appear either before or after the numeral like ‘approximately’, ‘almost’ and ‘at least’. Table 1 lists many approximators 
in wide use which are distinguished into four categories. Channell [14] asserted that all of the approximators imply a range 
of possible values for the quantity being described. Sometimes this interval is explicitly indicated with ranging constructions 
like ‘5 or 6’ and ‘15 or 20’ and ‘between 86 and 94’, but many hedged numerical expressions refer to a single exemplar 
number, about which the interval of imprecision is understood to be symmetrically or asymmetrically positioned around this 
value. For example, ‘around 5’ is symmetric, whereas ‘more than 5’ is asymmetric. The null approximator is in a category 
by itself.

Sadock [55] argued that approximators but also many other factors affect the implied imprecision about a quantity. From 
introspective linguistic analysis of pairs of natural-language expressions such as

1 million 990 000
about 1 million 1 million
about 990 000 990 000
about 1 million about 990 000
about a dozen about 12
about two and a half about 2.5
six-foot insect six-foot man

where the value on the left is understood to be less precise than the value on the right, he concluded that the roundness 
of the number mentioned, its display format, the possible range of the quantity, the relevant standards of precision, and the 
units themselves including whether they refer to discrete entities or mass nouns all affect the implied imprecision about 
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Table 1
Linguistic approximators of various kinds.

Null Symmetric Asymmetric Ranging

[] about above at least x but no larger than y
above almost between x and y
almost all but between x and y, inclusive
approximately and change x or x + 1
around and some ax or a(x + 1)

as good as as high as x to y
a total of as low as within x (units) of y
ballpark as many as etc.
bordering on at least
close to at most
essentially below
exactly bordering on
for all practical purposes close to
for the greatest part down to
give or take fewer than
in effect less than
in the ballpark of smaller than
in the neighborhood of more than
in the vicinity of no(t) fewer than
just about no greater than
more or less no larger than
near no less than
near to no more than
nearly no smaller than
nigh not quite
not far from on the brink of
on the order of on the edge of
or so on the point of
or thereabout(s) on the verge of
order over
practically up to
precisely virtually
pretty much etc.
pretty near(ly)
roughly
round about
virtually
well-nigh
within sight of
etc.

a quantity. Sadock [55] was so vexed by the effects of context that he concluded that linguistic vagueness could not be 
effectively decoded into rules governing the meanings of approximators.

Speakers and writers use approximators frequently, especially when they are being careful and trying to be truthful [50]. 
They arise commonly in expert elicitations, medical case histories and patient complaints recorded by health care profes-
sionals, text analyses, and legal or linguistic interpretations of discourse and testimony. It seems intuitively clear that using 
an inappropriate approximator can convert a truthful or correct statement into an untruthful or incorrect one. Thus, to 
wring from natural-language inputs the full import that they convey without misreading those inputs, it is essential that 
we understand these approximators quantitatively so we can properly interpret elicited numerical values. Decoding approx-
imators provides a key insight into the uncertainty expressed through natural language and its quantitative analysis benefits 
elicitation, communication, reasoning, and inferences based on hedged numerical values. Analysts of information expressed 
in natural language need to be able to interpret approximators quantitatively to appreciate the uncertainties expressed in 
speech and text. In this paper, we empirically quantify the numerical meanings of several common approximators, and 
describe their variations among individuals.

It would be advantageous to use approximators to encode the uncertainties estimated by risk analyses and similar nu-
merical calculations into natural language for use in risk communication to humans. Scientists and engineers have long 
been taught to use only significant digits in reporting their numerical results so as to not inadvertently imply more preci-
sion about a conclusion than is warranted [57,72], and they may assume that decision makers implicitly understand this 
convention. Yet we know that the significant-digits convention, in which for example ‘1.23’ is interpreted as the interval 
range [1.225, 1.235], is inadequate to express large uncertainties. There is no single number that can express the uncer-
tainty of [10, 16], nor even the narrower uncertainty of [14.8, 15.6]. Fig. 1 depicts a part of the half-plane of all possible 
real intervals [Left, Right]. Every possible interval range corresponds to a point on this plane above the forty-five-degree 
line. But only the corners of the triangles depicted in the figure can be exactly represented by a scalar number under the 
significant-digits convention, and only interval ranges corresponding to points inside these triangles can even be enclosed 
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Fig. 1. Intervals of the form [Left, Right] that can be represented by a scalar number under the significant-digit convention (corresponding to the top-left 
corners of each triangle) and intervals that can be enclosed under that convention (corresponding to the triangles) on the half-plane of all real intervals. 
Different sized triangles represent different numbers of significant digits of the scalar number.

by the intervals implied by scalar numbers under the significant-digits convention. Because the results of risk analyses can 
often result in uncertainties larger than can be expressed under this convention, scientists and engineers perhaps should 
also use approximators to form verbal characterizations that express the uncertainty of their numerical estimations if these 
can better or more naturally be understood by their audience, or at least by linguistically competent speakers of English 
in that audience. Of course risk communicators, and expositors of scientific and technical information generally, already do 
use approximators in their explanations, but it is not clear that they use them in the best or most robust way. Quantitative 
study of approximators and their implications may help to fashion guidance for more effective risk communication that is 
less prone to misunderstanding.

One way to develop a system for decoding and encoding uncertainty from and into approximators is an Aristotelian 
prescriptive approach in which scientists adopt technical meanings for some hedge words and turn them into jargon. This 
approach would simply assign quantitative meanings to various approximators based on ideas and rules conceived by ex-
perts or conventions. Such a prescriptive approach could be made to be internally consistent and to have properties that 
make the resulting system most useful in practice. For instance, a designed system could ensure that all uncertainty ranges 
can be conveniently represented in the system. Such completeness cannot be guaranteed if we restrict ourselves to the 
available approximators in natural language. In fact, various schemes applying technical meanings to English uncertainty 
words have been proposed by scientists several times in the past. For example, the Intergovernmental Panel on Climate 
Change recently defined ‘very likely’ to mean having probability between 90% and 99% [61].

Astronomers have likewise developed a scale converting between quantitative probability for impacts of near-Earth or-
biting asteroids and English expressions [7] in which, interestingly, risks with 100-year cumulative probability lower than 
10−8 have a likelihood of collision optimistically characterized as ‘none’. Weiss [66] suggested extending legal definitions of 
standards of proof to characterize scientific statements according to eleven levels of certainty. Kent [33] suggested formaliz-
ing the meanings of hedges used in intelligence briefings to prevent misunderstanding of “poetic” language such as ‘serious 
possibility of an invasion’. His scheme identified ranges of probabilities with English expressions:

100% certain

(93 ± ∼6)% almost certain

(75 ± ∼12)% probable

(50 ± ∼10)% chances about even

(30 ± ∼10)% probably not

(7 ± ∼5)% almost certainly not

0% impossible

This scheme was not complete in that, for example, a probability of 15% was not covered by any phrase, and it was criticized 
by his contemporaries as an imposition of bogus precision onto language. Wallsten et al. [65] revisited the quantification of 
vague probability terms using a fuzzy-sets approach.
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Fig. 2. Symmetric (left) and asymmetric (right) approximators of the number 7.

In fact, there have been innumerable other Aristotelian schemes to quantify the uncertainty expressions of natural lan-
guage (e.g., [8,17]), but these definition systems are almost never broadly accepted even within a discipline, much less 
beyond a narrow technical field. There are two notable exceptions. The World Conservation Union specifies a “critically 
endangered” species to be one with a probability of extinction of at least 50% within 10 years, and a “vulnerable” species 
to have a 10% probability of extinction within 100 years [41]. The most famous exception was Ronald Fisher’s suggestion 
that statistical findings in hypothesis testing with probability of 5% or less be called “statistically significant”. Such schemes 
are usually created for the sake of convenience, but they can be especially useful in legal and regulatory settings, because 
they translate quantitative results into qualitative categories. These systems have disadvantages, including susceptibility to 
the sorites paradox, and suboptimal decisions in contexts where gradation or vagueness is misrepresented by bright lines 
[69,24,60].

As far as we know, no one has proposed an articulated system to quantitatively define approximators, but it is easy to 
imagine one. Indeed, there are many ways to construct one based on magnitude of the exemplar number or its number of 
significant digits. For instance, consider the scheme illustrated in Fig. 2 (different heights are used only to disambiguate the 
several ranges but are otherwise meaningless). This system of decodings reflects a belief that all numerical quantities in the 
real world have uncertainties. The default interpretation of an explicit scalar number x with the null approximator is the 
interval implied by the decimal place of its least significant digit. So the expression ‘7’ is interpreted as [6.5, 7.5]. The ‘about’ 
approximator quadruples the width of this interval, and the ‘around’ qualifier increases the width by a factor of twenty. Even 
the phrase ‘exactly 7’ is interpreted as [6.9, 7.1], which is something less precise than ‘7.0’ with no approximator, which 
would be interpreted as [6.95, 7.05] under the significant-digit convention. This system requires the new approximator 
‘mathematical’ to describe numbers that are precise to infinitely many decimal places, as would be needed for the 2 in a 
square function. The definitions of these approximators are given in the table below, where d is the decimal place of the 
last significant digits of x. So, for instance, if x is 7, d is zero. If x is 7.0, d is 1, and if x is 700, d is −2. Nonsignificant digits 
are stripped away from x before the approximator function is applied.

Hedged numerical expression Interpretation
mathematical x x
exactly x x ± 10−(d+1)

x x ± 0.5 × 10−d

about x x ± 2 × 10−d

around x x ± 10 × 10−d

count x x ± √
x

almost x [x − 0.5 × 10−d, x]
over x [x, x + 0.5 × 10−d]
below x [x − 2 × 10−d, x]
above x [x, x + 2 × 10−d]
at most x [0, x],or[−∞, x]
at least x [x,∞]
order x [x/2,5x]
between x and y [x, y]

Note that some hedges are based on the number and position of significant digits used to express the quantity, while 
some are based solely on the magnitude of the quantity. The system is complete in the sense of being able to represent any 
given interval range because it supports the ‘between’ approximator. The characterizations can be compounded so that, for 
instance, ‘at most about 300’ would be the interval [0, 350]. The system can be extended in other obvious ways to handle 
points in time and temporal spans with approximators like ‘since’, ‘until’, ‘-ish’, and ‘on or about’, although the use of the 
sexagesimal number system and the modulo-twelve clock scale also makes time rather different from quantities expressed 
in a decimal system on a linear scale with respect to how uncertainty is typically encoded.

Whatever the possible advantages of such an artificial system, because it would be imposed by fiat, it could only at 
best achieve the status of jargon. The wide adoption of this or any system originating in scientific convention or perhaps 
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government regulation would require buy-in and on-going broad education among would-be users to be successful. Of 
course, we have little reason to believe that such a prescriptive system such as that proposed in Fig. 2 is the best or 
most appropriate system that could be devised for interpreting and forming numerical expressions in English. There are 
alternative interpretations and various possible decoding schemes. Even among the authors of this paper, multiple competing 
systems were conceived and championed. Long-standing scientific convention about interpreting the uncertainty from a 
naked scalar number is not universally observed. For example, Schulte et al. [56] suggest that the unqualified expression 
‘2.31’ should be interpreted as [2.30, 2.32], and some authors argue compellingly against trying to use significant figures to 
express uncertainty at all (e.g., [18]).

In this paper, we adopt an alternative descriptive approach to developing a way to decode and encode approximators that 
characterize uncertainty in numerical expressions in English [12,65]. In this Galilean approach, the quantitative meanings of 
various approximators are empirically quantified to reflect how native language users interpret them. What does it actually 
mean when someone says a phrase like ‘about 140’? Is it substantially different from what is implied by the similar phrase 
‘about 143’? Is it related to what is meant by the phrase ‘about 143.26’? Does ‘about’ denote a tighter or broader range 
than various other approximators? When their uncertainty is a particular interval, what ballpark scalar number do humans 
typically select to represent it? Does the behavior change when the uncertainty represents actual variation rather than 
epistemic uncertainty or ignorance per se? Does the result change when the variability is expressed in time, across space 
or among individuals or components? We expect a lot of variation among individual respondents about these questions. 
We also expect, as Sadock [55] argued, that context will often be important. Different natural languages must be studied 
separately.

Channell [14,13,12] appears to have been the first to try to quantify the implications of approximators. She found that, 
for almost all her informants, the approximators were interpreted as denoting continuous intervals (or sequential integer 
ranges) of possible values, invariably including the exemplar number. She collated histograms of the breadths of these 
intervals for the approximators ‘about’, ‘around’, ‘or so’, ‘not less than’ and ‘x or y’. Her quantitative results suggest there 
are differences between approximators but also substantial differences between informants, even for a small sample size of 
26 informants. The minimum and maximum lengths of these intervals, expressed as percentages of the exemplar number, 
varied by a factor of about three among her small sample.

We collected some preliminary data from native and non-native speakers of English in the United States about the impli-
cation of approximators using traditional direct questionnaires distributed to students (which was also Channell’s approach). 
Unfortunately, this method of interrogation is inefficient and tiresome, and even dizzying for the informant. It turns out to 
be quite difficult to ask enough people enough questions to nail down a distributional characterization of the quantitative 
meanings of the hedges. Fixed questions in static questionnaires are also highly susceptible to psychometric artifacts from 
cognitive biases such as anchoring. Obviously, the questions need to be randomized and the contextual numbers that are 
modified by the hedges should be varied to obtain general results.

2. Materials and methods: Amazon Mechanical Turk

We used Amazon Mechanical Turk (MTurk) to collect data about the meanings of approximators in English. Amazon 
Mechanical Turk is an Internet marketplace that allows requesters to crowdsource tasks to workers (or turkers) over the 
Internet. The tasks are posted by requesters on the Amazon Mechanical Turk Website, Sample tasks which can be commonly 
found on MTurk include answering questions, tagging images and videos, searching for relevant information on the Internet, 
etc. In MTurk terminology, tasks are known as human intelligence tasks, or HITs, as they usually require human intelligence, 
and cannot be accomplished by a computer.

Requesters pay to workers a set fee for performing a HIT upon approving the results of the task. If the result of the HIT 
is rejected by the requester, the worker receives no compensation, and the task remains incomplete, and can be performed 
by another worker. Requesters upload the list of questions/tasks to the MTurk website, and workers can choose from the 
list of various HITs which ones to perform. The requester can specify certain qualifications for workers such as native
language, country of residence, minimal approval rate, i.e. the percentage of their completed tasks that were approved by 
the requester, or the total number of tasks approved.

Reasons for choosing MTurk as a platform for conducting the current experiment include the heterogeneity of the worker 
population, low cost, high response rate, and ethical and regulatory simplicity. While the population of MTurk is not known 
to be representative of the population of US or the group of people who speak English natively, it however is more het-
erogeneous than any group of people which can be recruited to participate in the experiment in academic settings (such 
as a group of students completing a questionnaire). The cost of recruiting workers on MTurk is low. In a pilot experiment, 
we paid one cent per question to workers. Thus, for a sample consisting of about 2500 questions, we paid about $25 to 
workers, plus half of this amount as overhead1 to Amazon and received all answers in one day.

The size of the MTurk community results in a high response rate to HITs. In our case, answers to about 2500 ques-
tions were collected within 24 hours from making HITs available on MTurk. Because the identity of workers is effectively 
anonymous, and the investigators do not participate in answering the HITs, using MTurk to collect survey/interview data is 

1 The overhead to Amazon is max(10% × (per-HIT fee), $0.005) times the number of completed and approved HITs.
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exempt from the requirement of prior approval by an institutional review board under human subjects research regulation 
in the United States (45 CFR §46.101(b)(2) and §46.401(b); 45 CFR §690.101(b)(2); see HHS [28]; NSF [48]).

2.1. Experimental statements

A cache of experimental statements was constructed to control for possible effects of magnitude of the nomi-
nal value, its number of significant digits, its units, and other aspects of the context in which an approximator may 
be used. Over 800 statements containing numerical values most of which were sourced from the Internet website 
http://facts.randomhistory.com/archives.html which lists sundry historical or popular scientific facts by category. Examples 
of the original statements are given below, with the numerical expressions highlighted in bold:

Haiti’s highest peak is the Pic la Selle at 2680 meters.
A 14th-century book of Thai poems describes 23 types of Siamese cats.
Soldiers (hoplites) in ancient Greece wore up to 70 pounds of bronze armor.
In 2007, a dog named Rocco discovered a truffle in Tuscany that weighed 3.3 pounds.
Greece enjoys more than 250 days of sunshine a year.
Bats make up about 20% of all classified mammal species globally.

The statements to be used in the HITs put to MTurk workers were created by altering these original statements by ran-
domizing both the approximator and the nominal value used in the numerical expression. The approximator, if present, was 
removed from each statement. In the examples above, the approximators ‘up to’, ‘more than’, and ‘about’ were omitted. 
A new approximator was then randomly selected from the test set of approximators and inserted into the statement.

The original magnitude specified in each statement was also replaced by a substitute number, randomly selected from 
a set of numbers comparable in size to the original magnitude, but varying in its apparent precision. The set of possible 
substitutes was generated using a function written in Python given in Appendix A. This function produces, for each explicit 
numeral input, a finite list of values that we might consider to be reasonable substitutes for use in the experimental 
statements so that they vary widely in terms of numbers of significant digits and roundness of the nominal value. The 
function creates the list of substitute values by, for each digit in the input numeral, replacing that digit with a random 
digit, a ‘0’, and a ‘5’, and replacing each digit to the right of that one with zeros, to yield three possible alternative values. 
Numerals with a ‘5’ as the last significant digit are held by some [35] to be rounder than similar numerals with other 
nonzero digits in this spot. Example results from applying this function to the inputs on the left below generated the 
random variation and varying number of significant digits in substitute magnitudes on the right.

Input Substitute magnitudes
246 200, 240, 244, 245, 246, 250, 290, 500
1300 1000, 1300, 1305, 1309, 1330, 1350, 1400, 1500, 4000
0.74 0.3, 0.5, 0.7, 0.74, 0.742, 0.745, 0.75, 0.76
23.13 23.0, 23.1, 23.13, 23.1305, 23.1307, 23.135, 23.137, 23.15, 23.17, 23.2, 23.5

A number was chosen randomly from the set generated by the function and this number replaced the original magnitude 
in the numerical expression in each statement.

Statements were then manually reviewed to catch and remove nonsensical constructions such as ‘500 days a year’ and 
‘120% of people’. But we made no attempt to remove or edit statements with constructions that were merely linguistically 
implausible. For instance, although natural language speakers may only rarely or perhaps never use a phrase such as ‘roughly 
10 023’ such a phrase would be submitted for interpretation to MTurk workers. For the MTurk experiment, we generated 
866 experimental statements containing numerical expressions involving an approximator. To facilitate later statistical com-
parisons, we strove for a balanced design using the same number of experimental statements for each approximator, and 
the same number of statements with units from among the following groups:

discrete (‘people’, ‘dogs’, ‘species’, etc.),
money (‘$’, ‘dollars’, ‘cents’),
length (‘meters’, ‘miles’, ‘inches’, ‘feet’, ‘inches’, ‘km’, ‘cm’, ‘mm’, ‘m’),
weight (‘lbs’, ‘kg’, ‘tons’, ‘ounces’, ‘pounds’, ‘oz’, ‘milligrams’),
time (‘years’, ‘minutes’, ‘seconds’, ‘weeks’, ‘days’, ‘hours’),
percent (‘%’), and
speed (‘kph’, ‘mph’).

Several approximators were considered, including the null hedge, ‘about’, ‘above’, ‘almost’, ‘approximately’, ‘around’, ‘at least’, 
‘at most’, ‘below’, ‘exactly’, ‘nearly’, ‘no more than’, ‘no less than’, ‘over’, ‘precisely’, and ‘roughly’. The complete list of 
experimental statements is available at https://sites.google.com/site/numericalhedging/amazon-mechanical-turk.

Thousands of samples were collected using multiple interrogation formats. In the primary format, workers were asked to 
evaluate the ranges implied by hedged numerical expressions in paired statements differing only in their approximators. For 

http://facts.randomhistory.com/archives.html
https://sites.google.com/site/numericalhedging/amazon-mechanical-turk
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each statement, they were asked to provide minimal and maximal possible values for a quantity described by a phrase ex-
tracted from the statement. Each phrase consisted of an approximator, numeral and unit. For example, workers were shown

Statement: Roughly 25% of Canadians are Protestant. Statement: No more than 25% of Canadians are Protestant.
Phrase: Roughly 25% Phrase: No more than 25%

and asked to provide the minimum and the maximum possible values for the percentage of Protestant Canadians. Each HIT 
was a bundle of four statement pairs preceded by the following thirteen lines of instructions which did not change from 
task to task:

Each HIT was answered by 2 different workers before it was retired. Each statement was used in two HITs so as to 
make it possible to compare the effect of changes to the quantity’s magnitude, significant digits, and roundness. There were
422 HITS × 8 phrases × 2 workers = 6752 minimum-maximum ranges. The experimental results were obtained within 
5 days after uploading the HITs to MTurk.

3. Results

The data downloaded from MTurk were reviewed manually. When a worker gave a maximum that was smaller than 
the minimum, which happened in only 16 cases, the values were swapped in the data set. We were prepared to interpret 
missing maximal or minimal values as plus or minus infinity or zero, but almost none of the missing values could reasonably 
be interpreted this way, and therefore they were omitted from the analysis. Gross numerical outliers representing potential 
mistakes or misunderstandings were identified, and we conducted parallel analyses with and without these outliers. A result 
was identified as an outlier when the maximum given by the worker was greater than nine times the exemplar value, or 
when the minimum was less than one ninth of it. We chose nine as the factor in order to remove cases where the worker 
may have inadvertently typed an extra or omitted a necessary digit. Such a slip of the fingers would increase or decrease 
the value by at least ten fold, as might have occurred, for instance, in characterizing the maximum of the interval for ‘about 
1000’ as 11 000 rather than 1100. There were 95 such cases. After data filtering and removing unanswered questions, there 
were a total of 6038 minimum–maximum ranges.

Statistical and graphical analysis of the results was conducted using the R Environment for Statistical Computing [51]. 
Analysis of variance (anova) methods were used to discern the effects of approximators on the implied imprecision of 
the numerical quantity. Regressions were used to uncover the relationship between the uncertainty implied by a hedged 
numerical expression and various explanatory variables, including the approximator used, and the roundness, magnitude and 
unit group of the exemplar number mentioned in the numerical expression. The magnitude was characterized in two ways, 
first as the actual value of the exemplar number, and second as its order of magnitude taken to be the base-ten logarithm 
of the exemplar number. We computed both the number of significant digits in the exemplar number, and the order of 
significance, which is defined as 10−d where d is the decimal place of the last significant digit in the exemplar number. 
The number of significant digits in the expression ‘1.3’ is 2, and order of significance is 0.1. Roundness was characterized 
as the base-ten logarithm of the order of significance. The unit group and approximator were both categorical variables 
taking values from the sets above of 7 and 16 items respectively. We also included as explanatory variables in the analyses 
two Boolean variables: the discreteness of the unit (whether the unit group was the discrete category or one of the other 
6 measurable categories), and whether the last significant digit was a ‘5’. Ancillary variables returned by MTurk such as the 
amount of time in seconds which the worker spent on a given HIT or details about the worker were included in exploratory 
regression analyses, but were not found to be statistically interesting. The dependent variables in these analyses were 
measures of the breadth between the maximum and minimum values given by the workers in each case. We considered 
five output variables, including the range (difference between the maximum and minimum), the base-ten logarithm of the 
range, the relative range (ratio of the range to the absolute value exemplar number), and the minimum and maximum in 
units relative to the exemplar number.

Fig. 3 shows the relative breadths of all 6038 reported intervals distributed over 16 approximators. The red curves are 
empirical distribution functions for the left endpoints of each interval minus and then divided by the magnitude of the 
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Fig. 3. Relative uncertainty implied by various hedges characterized as empirical distribution functions of (m − e)/e, shown as the left distribution in each 
graph, and (M − e)/e, shown as the right distribution in each graph, where m and M are the left and right endpoints of the reported intervals, and e is the 
magnitude of the exemplar value in each numerical expression.

respective exemplar value. Likewise, the blue curves are the same for the right endpoints. These distribution functions form 
interval-type bounds on cumulative distribution functions called probability boxes that depict the relative uncertainties 
associated with the several approximators. These uncertainties could—but only very rarely do—exceed absolute values of 
one. Of the approximators studied, the tightest intervals are associated with the hedge ‘precisely’, but those for ‘exactly’ 
are nearly as tight. Those for the null hedge are a surprisingly close third. The breadths of ‘about’, ‘around’, ‘approximately’ 
and ‘roughly’ are substantially wider, and all quite similar to each other. The remaining approximators are understood to 
represent asymmetric uncertainties. Note that for several approximators the upper tails of the left bounds in red are actually 
above the exemplar value. In fact, for both ‘above’ and ‘over’, fully 42% of the left bounds were above their exemplar values. 
This means, for example, that the phrase ‘above 6.3’ for some people implies a range that includes the value 6.3, but for 
others implies a range that does not include 6.3. This rarely occurs for the other approximators for which in all cases less 
than 1% of the left endpoints exceed their respective exemplar values. The patterns for ‘at least’ and ‘no less than’ seem 
to be very similar to each other. The graphs for ‘above’ and ‘over’ are also largely similar to one another, but differ from 
the graphs of ‘at least’ and ‘no less than’ because the latter pair almost always includes the exemplar value. Analogous 
statements can be made about ‘at most’, ‘no more than’, ‘below’ and ‘almost’, which are effectively transpositions of the 
previous four approximators.

Fig. 4 shows the same relative uncertainties in detail for four of the approximators. The intervals consisting of left and 
right endpoints, again scaled as relative displacements from the exemplar value of the numerical expression, are plotted 
as horizontal line segments. The intervals are sorted by their breadths, with the narrowest intervals at the bottom and 
the widest intervals at the top of the graphs. The graphs in Fig. 4 reveal which left endpoint is associated with which 
right endpoint. As a consequence, we can observe the breadth and pattern of specific responses to specific hedges across 
respondents. The graph for ‘about’ and the null approximator are symmetric, with a few idiosyncrasies by some workers. 
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Fig. 4. Intervals of relative uncertainty understood by individual workers for several hedges.

The graph for ‘at most’ is strongly asymmetric. Although there are a couple of unusual intervals for this approximator, the 
graph reveals strong conformity about the direction of, and fewer idiosyncratic interpretations of, the uncertainty implied by 
the approximator. The graph for ‘nearly’ on the other hand reveals both symmetric and asymmetric intervals, the admixture 
of which seems to correspond to semantic ambiguity in this approximator. This result suggests guidance for elicitors. For 
example, if an informant uses the approximator ‘nearly’, an elicitor would be advised to seek to disambiguate which sense of 
the word was intended. Similarly in automated text mining applications, alternative potential interpretations of a sentence 
including ‘nearly’ as a hedge term could be flagged as more ambiguous than other consistently symmetric or asymmetric 
qualifying terms.

3.1. Uncertainty is commonly understated

An important consideration is whether people seem to be underestimating the uncertainty implied by numerical expres-
sions involving hedges. We may ask how often workers characterize a numerical expression as a zero-width interval, and 
how often the intervals are narrower than would be implied by the significant-digits convention. The results vary sharply 
among the different approximators, as shown in Table 2 below. In the table, the Zero Width column gives for each approxi-
mator the percentage of intervals reported by workers for which the left and right endpoint are the same value, indicating 
a point value as the only possible value, and a degenerate interval of width zero. The Too Narrow column gives the per-
centage of reported intervals which are narrower than would be implied by the significant-digits convention applied to the 
respective exemplar numbers. The corresponding sample sizes are shown in the last column of the table.

Zero-width intervals were surprisingly often reported by workers. This response was nearly universal for the ‘precisely’ 
and ‘exactly’ approximators, with only 3% of intervals interpreted to correspond to more than a single possible number, and 
it was nearly as common for the null approximator. Even more surprisingly, zero-width intervals were also occasionally in-
terpreted for the other hedges. It might seem to defy all mathematical sensibility to say that the meaning of “approximately 
2300” could not entail the value 2302 and must be identical to 2300.000 . . . with infinitely many decimal places, but the 
workers responded this way about 2% of the time. We thought that such responses might arise from a conflict between the 
semantics of the hedge and the discreteness of the units of the value being characterized, such as when a test phrase is 
“approximately 2346 people” which might be interpreted as fatuous hedging because one cannot have a fractional person. 
This conflict may explain the zero-width interval reported for the expression “approximately 3005 coffee houses”, but does 
not seem to be at play in the majority of zero-width intervals such as those reported for the expressions

“approximately 25 kg”,
“approximately 70 countries”,

and even

“approximately $124 000”, and
“approximately 10 billion dollars”,

which apparently are interpretations by particularly literal-minded workers.
Outside of mathematics, perfectly precise numbers are incredibly rare topics in human discourse. All numbers that are 

actually physically measured, which are essentially all numbers that have units other than integer counts or tallies of integer 
counts, inescapably have measurement error [52]. It is possible that workers understand this fact intuitively yet lack the 
mathematical background to express this in terms that could be captured in the Amazon Mechanical Turk experiments.

Even if we set aside the reports of zero-width intervals, the results are also striking because so many intervals are 
narrower than would be implied by the significant-digits convention. With exceptions perhaps for the ‘precisely’ and ‘exactly’ 
approximators, the interval implied by the significant-digits convention is arguably the logical lower limit on the width of 
an interval of possible values implied by a numerical expression, which arise from basic considerations about how precise 
numbers might have been rounded to form the exemplar value. We had expected that the intervals reported by workers 
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Table 2
Evidence that uncertainties implied by numerical expressions are underestimated.

Approximator Zero width (%) Too narrow (%) Sample size

Precisely 97 98 450
Exactly 97 99 362
[Null] 94 98 407
About 0 48 366
Roughly ∼ 0 40 367
Approximately 2 44 369
Around 0 42 397
Almost 2 62 411
Nearly 2 58 388
At most 0 46 359
No more than 1 46 321
Below ∼ 0 51 340
Over ∼ 0 49 371
Above ∼ 0 47 352
No less than 1 48 376
At least 1 51 402

would rarely be narrower than the respective significant-digits intervals. Thus, apart from maybe the first two rows, the 
percentages in the Too Narrow column are quite surprising in that between 40 and 60 percent of intervals are narrower than 
this limit. Nearly half of the responses to a question asking, for instance, what “about 2300” means specify intervals that 
are narrower than 100, which is the width of the interval [2250, 2350] implied by the significant-digits convention. We had 
presumed that 100 would be a lower limit on the width, because this interval is implied by the structure of the exemplar 
alone [5,72,52], before considering the semantic implications of the hedge ‘about’ which should only broaden the interval. 
Apparently, this reasoning does not apply in the interpretations of many people.

3.2. Regression analyses

We undertook linear regression analyses to explain the variation observed for the base-ten logarithm of the unnormalized 
widths of the intervals reported by workers as a function of the magnitude and roundness of the exemplar values and 
other predictor variables. We used separate regressions for each approximator. We could have instead constructed a grand 
regression with the approximator itself as a predictor variable along with the magnitude and roundness of the exemplar 
value, but doing so would have entailed an assumption of homoscedasticity among residuals for the various approximators. 
Such an assumption would be untenable given the scatter evident in the graphs of Fig. 3.

Not all variables offered as predictors could be reasonably used together in regressions. For instance, the Boolean variable 
indicating the discreteness of the unit is entailed by the unit group categorical variable, so both should not be used together. 
Likewise, the magnitude, number of significant digits and roundness variables are essentially coplanar as one is a function 
of the other two. (Roundness is the integer part of the base-ten log of the exemplar value plus one and minus the number 
of significant digits.) Thus, a regression can only use two of these variables as predictor variables. We found that the log 
exemplar value and roundness yielded slightly higher regression fits as measured by the coefficient of determination. We 
excluded from the regression analyses any intervals of zero width because their log ranges would be negative infinity. Note 
that this included most of the intervals reported for the approximators ‘precisely’ and ‘exactly’ and [null].

Table 3 gives coefficients for an expression to predict the log width of the interval implied by a hedged numerical 
expression involving a given approximator and exemplar number. The log width is

L = A + Bz + Cr + D f + Ezr + Fzf + Grf + Hzrf

where z is the base-ten log of the magnitude of the exemplar number, and r is its roundness, computed as the base-ten log 
of its order of significance, and f is 1 if the exemplar numeral ends in a ‘5’ and 0 otherwise. The interval is predicted to be 
10L units wide. The residual uncertainty about this width not accounted for in the regression is expressed as a lognormal
distribution with mean equal to 10σ 2/2 and variance equal to 102σ 2

–10σ 2
, where σ is given in Table 3. The last column 

of the table gives the (multiple, unadjusted) coefficient of determination which characterizes the goodness of fit of each 
regression. Comparable coefficients from parallel regression analyses for the minima and maxima of the intervals directly 
(rather than their ranges) are available at the project website https://sites.google.com/site/numericalhedging/hedge-code.

Previous work quantifying the numerical implications of approximators by Channell [14] suggested that the units of the 
quantity make a difference in how wide the perceived interval would be. Because we employed 189 individual units in 
the test statements, we did not have sufficient sample sizes to explore this question for each unit separately. Instead, we 
grouped units into seven dimensional categories (money, length, weight, time, speed, percent, and discrete). These seven 
levels formed a factor in the anovas. The linear model included this factor as well as the magnitude and roundness of the 
exemplar number as predictor variables. In none of the analyses for the sixteen approximators was the unit group factor 
statistically significant. We also looked for an effect of whether the unit of the quantity was countable or not. The linear 
models were expanded to include a binary variable that was set to true if the quantity was discrete (countable) or false if 

https://sites.google.com/site/numericalhedging/hedge-code
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Table 3
Coefficients from regression analyses for each approximator to predict the width of an interval implied by a hedged numerical expression.

Approximator A B C D E F G H σ R2

About −0.2085 0.4285 0.2807 0.0940 0.0147 −0.0640 −0.0102 0.0404 0.5837 0.7412
Roughly −0.103 0.3687 0.2559 −0.0303 0.0353 0.1051 0.1422 −0.0562 0.5966 0.7211
Approximately −0.3171 0.4993 0.254 0.6410 0.0177 −0.2835 0.1025 0.0169 0.6192 0.7364
Around −0.1018 0.3429 0.3169 0.0951 0.0381 −0.0005 0.0174 −0.0029 0.5261 0.8118
At most −0.3076 0.4751 0.2477 0.1168 0.0088 −0.0619 0.1551 0.0052 0.5956 0.7432
At least −0.1128 0.3624 0.3829 0.3188 0.0087 −0.1404 0.0069 0.0409 0.5927 0.7562
No more than −0.2699 0.4187 0.2418 0.2216 0.0382 −0.0467 0.0689 0.0069 0.5916 0.7640
No less than −0.0187 0.3412 0.2207 −0.1427 0.0341 0.1616 −0.1480 0.0083 0.6314 0.7475
Over −0.0668 0.3793 0.2490 −0.1635 0.0344 0.1353 −0.0068 −0.0176 0.6666 0.7643
Above −0.1736 0.4483 0.2625 0.0224 0.0112 0.0669 −0.1354 0.0156 0.6668 0.7079
Below −0.3052 0.4275 0.2666 0.3141 0.0353 −0.1348 0.1678 −0.0168 0.6577 0.7500
Almost −0.4539 0.4593 0.3567 0.4006 −0.0196 −0.2245 −0.0534 0.0882 0.6640 0.7140
Nearly −0.2716 0.3420 0.2722 0.0923 0.0440 0.0196 0.0386 −0.0270 0.5969 0.7677
[Null] 0.2070 0.1374 −0.4265 −0.4267 0.2450 0.3341 2.1650 −0.6876 0.7869 0.6400
Precisely −0.4989 0.5884 0.3812 1.3500 −0.0774 −0.8274 −0.7248 0.2464 0.3859 0.8566
Exactly −0.8360 0.7434 0.6058 5.427 −0.2055 −0.7757 0.0000 0.0000 1.0370 0.7019

it was continuous (measurable). In only two of the sixteen analyses was this variable a statistically significant predictor of 
the log range (P = 0.025 for ‘almost’ and P = 0.047 for ‘approximately’). Thus, although it may be true that the unit of a 
numerical expression makes some difference in the implied width of the interval of possible values, it does not appear that 
either the dimension or the countability or measurability of the unit makes such a difference as far as we detect.

3.3. Numbers without hedges

There is an old joke about a janitor at the American Museum of Natural History who was heard to tell museum visitors 
that some dinosaur skeleton was 65 million and 7 years old. When asked about the 7 years, he explained that, when he 
was hired 7 years ago, the museum curator had told him the skeleton was 65 million years old. Unfortunately for both risk 
communicators and automated text analysis systems alike, the premise of this joke is true to life in that numbers that are 
not modified with hedge words are commonly interpreted as being more precise than they likely are.

As shown in Table 2, we found that few workers interpret numbers expressed with the null approximator as implying 
any uncertainty at all. Out of a sample size of 407 intervals describing the possible values implied by numbers without any 
explicit approximator, 94% had zero width, as though those numbers were perfectly precise. These responses created the long 
spikes at zero in the ‘[null]’ graphs in Figs. 3 and 4. Fully 98% of the intervals reported for numeric expressions with the 
null approximator understated uncertainty relative to the traditional scientific interpretation based on the significant-digits 
convention.

Preliminary research using questionnaires that was previously conducted with respondents recruited from among grad-
uate students in a class on risk analysis supported the same conclusions. When asked to indicate the smallest and largest 
possible values that were consistent with a given phrase, all but one of the respondents gave zero-width intervals for the 
unhedged numerical expressions ‘7’, ‘470’, and ‘2.31’. Thus, even (neophyte) risk analysts seem to be prepared to accept nu-
merical expressions with the null hedge as perfectly precise quantities. They also gave the same degenerate intervals when 
asked about the phrases ‘exactly 7’, ‘exactly 470’, ‘exactly 2.31’, ‘precisely 7’, ‘precisely 470’, and ‘precisely 2.31’, suggesting 
that the approximators ‘exactly’ and ‘precisely’ have no substantive quantitative implications on the numeric interpretation 
compared to the null hedge, although they may have some linguistic role.

Research suggests that effective risk communication requires clear and consistent messages, and risk communicators 
worry that adding uncertainty information to forecasts may confuse the message and impede understanding and action 
by the public [47, p. 69]. Yet, as risk analysts well know, this uncertainty matters. For example, when the Red River was 
forecasted during the 1997 flood to crest at 49 feet, residents believed their 52-foot dikes would protect them. When the 
river actually crested over 54 feet, it overtopped dikes and inundated communities in North Dakota and Minnesota leaving 
them devastated [45]. Residents and local officials seem not to have appreciated that the hydrological prediction had un-
certainty, and that this uncertainty was increased by the fact that the event would be a record-breaking event. Forecasters 
were aware of the uncertainty (although they may have substantially underestimated it), but did not effectively communi-
cate this uncertainty to residents and decision makers. The prediction was incomplete in that it did not highlight various 
scenarios that might entail higher water levels. No bounding or worst-case predictions were provided [31]. Updates to the 
prediction were not timely, and the fact that the prediction did not change much may have been interpreted by the public 
as surety about the forecast. Nevertheless, the subsequent strong public criticism for underestimating the flood seemed to 
be hard for forecasters to accept because, after all, they had come to within a few feet of predicting this unprecedented 
event. Political decision makers had expressly requested single forecasts of crest levels [49,47]. The forecasters had believed 
the public would understand that all such predictions are uncertain.

Of course it is not clear that simply affixing some hedge such as ‘about’ or ‘at least’ to the predicted water level could 
have resulted in better risk communication, or in any way have changed the outcome of the Red River flood. But it would 
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have allowed for a more easily defendable truth qualification as described by Prince et al. [50]. What is clear from our 
findings is that hedge-less numerical expressions are very likely to be misinterpreted if the number has any uncertainty, 
and the direction of the misinterpretation invariably diminishes the uncertainty. The situation is likely worsened when the 
number is expressed by a perceived authority. If the people who have studied the problem say the answer is 49 feet, 
consumers of the information usually have scant cause to question the estimate. Shield hedges such as ‘we expect that’ or 
‘we estimate that’ seem to be automatically discounted by the public because the pronouncements come from authorities, 
and in some cases the only authority. This is part of what we might call the authority problem which is that people tend to 
overtrust pronouncements delivered by authority figures [58,19,21,10]. It makes little impact how much authorities qualify 
their statements as opinions, because the whole reason to appeal to authorities is to elicit those opinions which, in the 
absence of other ideas, have to serve as the only estimates. This makes it all the more important for an honest analyst to 
convey the uncertainty about a prediction in the expression of the prediction itself.

Given that the public often demands single-number predictions, using hedges may be the only way for an analyst to 
sneak this uncertainty into the prediction, especially since the significant-digits convention appears to be not communicative 
and is incomplete in that it cannot express every possible range of uncertainty. Numbers expressed without hedge words 
are very likely to be commonly misunderstood as being more precise that they actually are. Siegrist et al. [59] call such 
unqualified expressions “naked numbers” and argue that they can produce erroneous results in cost–benefit analyses, risk 
assessments and other analyses under uncertainty.

3.4. Roundness of the exemplar number

Round numbers are integers whose numerals end in one or more zeros. Among numbers of the same order of magnitude, 
having more ending zeros makes the number rounder, so 123 000 is rounder than 123 450. The idea of roundness is often 
extended to noninteger numbers, so 1.23, which is equal to 1.23000, is rounder than 1.23456. For a given order of magnitude, 
the log order of the least significant digit directly measures the roundness of the number. For example, the numbers 12 100, 
12 342, 12 780, and 12 900 have log significance orders of 2, 0, 1, and 2 respectively, despite all the numbers having the same 
order of magnitude of 4. For integers, the log significance order counts the non-significant trailing zeros. The regression 
analyses discussed above reveal that increasing roundness of the exemplar number is associated with larger width of the 
reported interval, even after controlling for the magnitude of the exemplar number. The regression coefficients for roundness 
(log significance order) were positive for every approximator studied.

Among English2 speakers, zero is not the only digit that can be used to make round numbers. It is often presumed 
that a numeral ending in the digit ‘5’ is a rounder number than one ending in another nonzero digit. Five is, in a sense, 
halfway to zero. It has been assumed in the linguistics literature (see, for example, Krifka [35]) that approximators such as 
‘about’, ‘around’, and the null approximator would allow wider ranges of possible values if applied to an exemplar value 
with a least nonzero digit of ‘5’ rather than another nonzero digit. As an example, one can imagine that there might be a 
difference between two answers to the question “What time is it?”, one answer where the number of minutes ends with 5, 
such as “It’s 12:35” vs. an answer where the number of minutes ends with a nonzero number different from 5, such as “It’s 
12:37.” It has been argued that in the former case, the interval is larger than in the latter case: it could be [12:33, 12:37]
for the former case, an interval with the width is four minutes, compared to the interval [12:36 and 30 seconds, 12:37 and 
30 seconds] for the latter case which is an interval with the width one minute. Regression analysis can also address the 
question of whether numerals ending in ‘5’ imply wider intervals than those that end in other nonzero digits.

We tested this question using the data for the symmetric approximators ‘about’, ‘around’, ‘approximately’, and ‘roughly’. 
In anovas that controlled for the effects of magnitude and roundness of the exemplar value, we found that there was 
a positive and statistically significant effect only for ‘around’ (P = 0.024). For the approximator ‘roughly’, we observed a 
significant statistical interaction that precludes a simple interpretation of the effect, and we observed no significant effect for 
either ‘approximately’ (P = 0.097) or ‘about’ (P = 0.36). However, because the set of these approximators is homoscedastic 
and the original claim by linguists was about symmetric approximators as a class, it is perhaps reasonable to test for the 
effect on the pooled data. This test of pooled data revealed a positive and statistically very significant (P < 0.0002) effect. If 
the intervals for the null approximator are also included in the analysis, the effect is still highly significant (P < 0.0003). We 
thus confirm that ending the numeral in the exemplar value with a ‘5’ is interpreted to imply a wider interval of possible 
values, at least for the symmetric approximators, although the size of the difference is small compared to the effect of either 
the magnitude or roundness of the exemplar number.

What is the quantitative implication of this significant effect of five-rounding? Fig. 5 depicts the effect of rounding the 
exemplar number to end in a ‘5’ on the perceived uncertainty of numerical expressions for all the symmetric approximators. 
The figure shows simultaneously the effects of magnitude, roundness and five-rounding. The lengths of the vertical line 
segments represent the possible effect (in terms of log range) of having or not having a ‘5’ as the last significant digit. They 
are the possible values predicted from the fitted regression model for different nonzero last significant digits. The predictions 

2 People tend to exhibit preferences for the last digit of numbers they report according to their respective language. French and Italian speakers favor 
0 and 5 as the last digit, whereas 2, 4, 6 and 8 are more favored by German speakers [9], and this language-specific pattern seems to be irrespective of 
nationality. English speakers seem to favor 0, but apparently also 8 and 5 de [40].
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Fig. 5. Breadths (vertical segments) of uncertainties about the log range of intervals implied by exemplar numbers ending in a ‘5’ versus another nonzero 
digit predicted for all symmetric approximators.

were made at every value of magnitude and roundness in the observed data set. Given a magnitude and roundness for the 
exemplar number, the upper endpoint of the depicted line segment corresponds to the exemplar number ending in ‘5’, and 
lower endpoint corresponds to it ending in another nonzero number. The rows apparent in the scatter of the line segments 
correspond to the various integral log significance orders (roundnesses), with small orders at the bottom of the graph and 
larger orders toward the top. The statistically significant interaction between the log magnitude and the log significance 
order of the exemplar value is reflected in the graph. We see the interaction in the fact that the rows corresponding to 
different log significance orders have noticeably different slopes. The scattergrams for the individual approximators are 
qualitatively similar to the pattern in Fig. 5.

4. Encoding uncertainty into hedged numerical expressions

Having considered the direct problem of interpreting the quantitative meaning of a hedged numerical expression that 
has been produced by a native speaker, we now address the reverse problem of formulating a hedged numerical expression 
to encode uncertainty for communication. Analysts compute uncertainties from their risk analyses which then need to 
be communicated to decision makers and sometimes the public at large, and it is incumbent on the analyst or the risk 
communicator to express these uncertainties in ways that can be understood and appreciated.

There are three inputs for this process. The first and main input is the interval of uncertainty to be conveyed, which 
might be a confidence interval or a dynamic range of some variable or some other window of uncertainty in which a 
quantity has been isolated. The second input is the dimension of the units. The units themselves may be selectable. For 
instance, when the analyst is given that the quantity is a time, several possible units are available, including second, minute, 
hour, day, week, month, year, decade, etc. The unit can be selected to most readily convey the uncertainty. Besides the 
dimension and the interval range, the only other input is whether the uncertainty should be described symmetrically or 
asymmetrically and, if the latter, from which direction. With these three inputs, there are constraints on the magnitude of 
the exemplar number to be used in the constructed numerical expression, although there is some leeway in its particular 
value.

In practice, perhaps the simplest way to find an appropriate hedged numerical expression for conveying a given interval 
is to use a simple trial-and-error strategy varying the approximator, the units, the exemplar value, and its roundness (or 
number of significant digits) to find the combination that minimizes the difference between the log width of the interval 
computed using the regression analyses and that of the actual interval. Alternatively, this fitting can be constrained to 
among intervals that encompass the given interval so as to never understate the uncertainty. There may not be a single 
optimal way to express the uncertainty from a risk analysis. Indeed, the similarities we observed among several of the 
hedges suggest that, in many cases, multiple approximators may be essentially equivalent for a particular task. The search 
strategy therefore need only be satisficing and not optimizing.

The latest regression coefficients from analyses conducted as part of the research described in this paper are embedded 
in software written in R [51] to interpret hedged numerical expressions. The code is available from the authors or directly 
from https://sites.google.com/site/numericalhedging/hedge-code. In some applications it may be reasonable to undertake a 
special assessment, perhaps via traditional questionnaires, Amazon Mechanical Turk, or other on-line survey approach [4]. 
Such an assessment can directly characterize the role played by different individual units that could be used to express 
results on the quantitative implications of hedging.

https://sites.google.com/site/numericalhedging/hedge-code
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5. Conclusions

Different English speakers understand approximators such as ‘about’, ‘nearly’, and ‘no less than’ in different ways, and 
we find considerable inter-individual variation, but there are consistent patterns in the perceived implications of the various 
approximators. These patterns are strongly modulated by context such as magnitude of the number, its roundness, and even 
possibly its units.

With regression analysis and sample sizes in the thousands obtained through Amazon Mechanical Turk, we are able to 
construct a decoding for each approximator that explains the likely uncertainty that will be understood when it is used as a 
hedge for a numerical expression. These decodings characterize the quantitative implications of the uncertain expressions, 
which is important for understanding patient complaints about, for instance, a headache “that’s lasted over 7 days”. The 
residual variation around each regression prediction can be expressed as a probability box encompassing a distribution 
of results across respondents and the epistemic uncertainties they reported. These findings can also be applied to encode
uncertainty for fashioning numerical expressions used in risk communication, so long as the uncertainty is not very wide.

The differences between approximators that we originally expected to see do not seem to be empirically justified by 
the data obtained from native English speakers. There is far less variation among the hedges than might be imagined, and 
far less than would be linguistically and practically useful. In fact, the approximators ‘about’, ‘around’, ‘approximately’ and 
‘roughly’ are almost identical in distribution. Likewise, the approximators ‘precisely’, ‘exactly’ and the null hedge appear to 
be very similar, almost to the point of indistinguishability. The asymmetric approximators are similar to one another as 
well, modulo the direction of asymmetry. Most surprising is our finding that the null hedge entails no uncertainty at all 
among most English speakers. If this finding persists under different experimental designs and interrogation schemes, it is a 
fundamentally important lesson for risk communication. It would imply that the significant-digits convention used by many 
scientists to express numerical results and interpret numerical values reported by others is essentially totally ignored by 
most people.

6. Discussion

Even though honest accounting of uncertainties can make criticism of risk assessment projections unsportingly easy 
(e.g., [34]; cf. [2,27]), almost all risk analysts agree it is of fundamental importance. There are a host of special problems 
associated with risk communication of uncertain values [46,44,23,63,62], and there are good reasons to believe that, as a 
profession, we are doing it incorrectly, or at least inefficiently.

The ability to quantitatively decode and encode natural linguistic expressions of uncertainty would seem to be a basic 
facility that must be developed in risk communication. Hedged numerical expressions are extremely common in writing 
and speech in English. Automated Google numerical searches reveal usage patterns for approximators in the English-
language text corpus of the indexable Web (which excludes FTP files, chat, etc.). Searches for all combinations of a 
list of common units and hedges associated with a number between zero and one million using Google queries like 
“about 0.1000000 kilometers” yielded the results depicted in a heatmap in Fig. 6 where darker shades of gray 
imply higher counts. Base-ten logarithms of the occurrence counts are superimposed on the heatmap. The approximators 
‘about’ and ‘over’ were the most common hedges and the results roughly followed the word frequency in the English lan-
guage. Units of time (especially years) and people were the most common units associated with hedge words.

The experiments described in this paper can be extended and generalized in a variety of ways. For instance, it would be 
relatively straightforward to consider fractional values, negative values, absolute times such as dates, quantities on special 
scales such as temperatures, mixed scales such as feet & inches, and perhaps geographical coordinates. It would also be 
easy to explore possible regional differences in the quantitative implications of approximators. Amazon Mechanical Turk 
can also be used to extend the experiments to languages other than English. There is considerable similarity among human 
languages with regard to how approximators are used, although there are some exceptions. For example, Russian uses words 
such as ‘okolo’ (‘nearly’), ‘poqti’ (‘almost’), ‘primerno’ (‘about’), etc., in ways similar to their English counterparts, but 
Russian also has a linguistic construction known as approximative inversion in which switching the order of the numeral 
and the noun creates an approximative reading [68]. The following sentences illustrate this construction:

Ivan vstretil 40 qelovek Ivan vstretil qelovek 40
Ivan met 40 people Ivan met people 40
“Ivan met 40 people” “Ivan met approximately 40 people”

A number of East Asian languages such as Japanese, Korean and Mandarin use obligate numerical classifier words com-
parable to measure words even for notions that are considered countable nouns in English. These classifiers also contain 
meaning. For example, the word ‘kuai’ in Manadrin is used for chunky things such as rocks or piece of pork [39]. Apart from 
these rather minor differences, the systems of approximators used in all natural languages seem to have remarkable con-
gruences, which suggest that they should be amendable to study and cross-linguistic comparison using Amazon Mechanical 
Turk.
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Fig. 6. Grayscale heatmap of the base-ten logs of the number of occurrences for various approximators (columns) and units (rows) in numerical expressions 
found by Google.

6.1. Other language systems conveying uncertainty

Channell [14] described a variety of ways English speakers communicate their uncertainties. Besides the unit–number–
approximator paradigm, English has at least two other systems to convey imprecision, or equivalently, to qualify the 
precision that an expression about a quantity should be understood to have. Both systems use a unit–quantifier paradigm 
that folds imprecision and magnitude together. In the first system the quantifiers are pseudonumbers such as ‘dozens of’, 
‘millions of’, ‘bajillion’, ‘eleventy’, ‘umpteen’, and placeholders borrowed from mathematics such as ‘X ’, ‘Y ’, ‘Z ’, ‘n-tuple’, and 
‘a number of’ that denote unspecified numbers often to be determined later. Pseudonumbers already combine imprecision 
with magnitude, but they too can be hedged as in the phrase ‘about a bajillion dollars’, although it is unclear whether 
the approximator makes a difference. The second system uses an elaborate array of generally non-numerical words such as 
‘much’, ‘many’, ‘little’, ‘few’, ‘some’, ‘both’, ‘a couple of’, ‘several’, ‘all’, ‘any’, ‘each’, ‘every’, ‘most’, ‘not any’, ‘not all’, ‘a hand-
ful of’, ‘a lot of’, ‘lots of’, ‘plenty of’, ‘innumerable’, etc., which grammatically are determiners that express a relative or 
indefinite indication of quantity. Although these constructs are called quantifiers in linguistics, they convey only qualitative 
information about a magnitude or quantity.

The study of quantifiers dates to the invention of logic itself by Aristotle [67]. Modern first-order logic recognizes only 
the universal quantifier (∀, ‘for all’) and the existential quantifier (∃, ‘there exists’), perhaps corresponding to ‘every’ and 
‘some’ respectively. But logicians and linguists today recognize a substantially generalized notion of quantifiers [3,67], which 
includes approximators in a special category. Among these quantifiers are primitive and derived forms (e.g., ‘not any’). Unlike 
approximators which are continuously generated as language evolves, the list of primitive quantifiers is fixed and consistent 
across all human languages, although it is not exhaustive logically (e.g., no natural languages have ‘not all’ expressed in a 
single word). Nearly two hundred years ago the philosopher De Morgan attempted to develop a calculus for interpreting 
and making quantitative inferences from semi-quantitative expressions using linguistic quantifiers [53]. It would certainly 
be helpful to bring this work into flower by establishing rules to decode the quantitative implications of generalized quanti-
fiers, and thus allowing automated quantitative interpretation of natural-language utterances that involve words like ‘some’, 
‘several’, ‘most’ and ‘not all’. It may be possible that a direct approach using MTurk such as we have used to study the quan-
titative implications of approximators in numerical expressions may also be useful in studying the quantitative implications 
of linguistic quantifiers.

6.2. Fuzzy sets or other structures

It is possible that some or most people have more complex conceptions of hedged numerical values than simple ranges. 
For instance, it might reasonable to assert that the numeral 7 with some particular approximator corresponds to a trape-
zoidal fuzzy number [32]. In particular, one person might interpret it to be [6, 6.5, 7.5, 8] (which has a flat top over the 
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range [6.5, 7.5] representing entirely possible values, and a base spanning the range [6, 8] as the conceivable values). Other 
people might contrarily assert for the same hedge that the flat top and range are considerably wider.

Channell [14] claimed that individuals interpret numbers with approximators as implying only interval ranges, rather 
than some more complex characterization. In our own preliminary work, we found subjects did not provide any more 
detailed information than intervals, even when asked to. Because intervals are fundamental structures for both imprecise 
probability and fuzzy-set approaches, the results of our study can be applied in both. For these reasons, we only collected 
intervals in the MTurk experiments.

Fig. 3 depicted the collections of intervals reported by a population of workers as probability boxes [20], but these 
collections could also be summarized by fuzzy numbers [32]. Many ways to construct fuzzy membership functions from 
empirical data have been described (e.g., [24,65,60,64,6,42,43]). In principle, the MTurk approach could be extended to elicit 
fuzzy numbers or probability boxes or other structures directly from individuals. These experiments could be designed 
to detect whether any individuals conceptualize hedged numerical quantities with more information content than simple 
intervals.

There is both a clear connection as well as a distinction between this work in interval-valued approximators and the 
linguistic hedges associated with Zadeh [71], fuzzy logic, and the computing-with-words trend that has unfolded over the 
last four decades. In his seminal work on the topic, Zadeh [70] defined a linguistic hedge as “an operator which acts on the 
fuzzy set representing the meaning of the operand”. We can think of the approximator as special type of linguistic hedge 
that acts a constructor operator to convert a precise numerical value to an imprecise quantity (interval, fuzzy set or proba-
bility box). In reaction to Zadeh’s work, Lakoff [37] affirmed that a better understanding of modifiers is important in natural 
language semantics. In questioning some of the shortcomings of specific modifier valuations, which include quantifications 
of hedges, he posited a perceptual model for interpretating modified values that depend on contextual factors. The MTurk 
crowdsourcing experiment is an attempt to elicit these valuations and to find commonalities in perceptual models across 
informants. Such a research program would expect to find semantic invariants that could be mapped as uniformities across 
situations [54]. An attempt to characterize such a mapping with approximators is reflected in the diversity in context data 
used in the MTurk experiment.

Fuzzy methods offer an alternative and more comprehensive strategy for quantifying the implications of hedged expres-
sions. In particular, they promise to characterize both shields and approximators. Indeed, it is common for natural language 
statements to include a shield hedge in combination with an approximator. For instance, “it’s most likely around 5 days old” 
may translate into an imprecise probability distribution centered around 5 days.

6.3. The special case of probability

Expression of probabilistic risk is a fundamental special case. Humans and maybe primates generally seem to have an 
innate probability sense [25], although it may fail to engage for ill-formatted sensory data [15].

A wide variety of verbal, graphical and other techniques have been suggested for conveying a probability of a well 
defined event. One fundamental difficulty in this most basic risk communication task may be that most strategies presume 
the probability is precisely characterized as a real number [62]. In fact, probabilities are usually estimated from data limited 
in abundance and precision. Likewise, risk analyses often yield imprecisely specified probabilities because of measurement 
error, small sample sizes, model uncertainty, and demographic uncertainty. In contrast, human cognition seems to account 
for the effect of sample size automatically so that ‘10 out of 100’ is perceived to be more precise than ‘1 out of 10’. 
Gigerenzer and his colleagues [22,23,36] argue that “natural frequency” in expressions like ‘k out of n’ is an effective tool 
for conveying an event probability, including the reliability of the estimate embodied in the n-value.

This facility for natural frequencies can be exploited for communicating calculated risks. Under the theory of confidence 
structures [1], the probability of an event estimated from binary data with k successes out of n trials is associated with a 
structure that has the form of a probability box. When n is large, this structure approximates the beta distribution obtained 
by Bayesians under a binomial sampling model and Jeffreys prior, and asymptotically it approximates the frequentist scalar 
estimate k/n. But when n is small, it is imprecise and cannot be approximated by any single distribution because of demo-
graphic uncertainty that arises from estimating continuous variables from discrete data. When a risk analysis yields a result 
in the form of a precise distribution or imprecise probability box for an event’s probability, we can approximate the result 
with a binomial probability estimated for some values of k and n. Thus we can characterize the event probability from the 
risk analysis with a terse, natural-language expression of the form ‘k out of n’, where k and n are nonnegative integers and 
0 ≤ k ≤ n. Note this natural frequency is one of several numerical hedges using paired numbers. It is comparable to, and 
composable with, ‘x or y’, and ‘x to y’.

6.4. Future work: ludic elicitation

There are in principle several ways to approach understanding how uncertainties from numerical summaries expressed 
in English phrases should be decoded quantitatively to inform a risk analysis. Questionnaires asking readers the meanings 
of hedges were found to be cumbersome and even dizzying to the informants. Such questionnaires could not conveniently 
include potentially important background information that would give context to each use of a hedged numerical expression. 
However, using Amazon Mechanical Turk, the same kinds of questions can be contextualized and presented as separable 
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individual tasks posed to human workers. We found this to be a convenient approach that produces good sample sizes, but 
it may yield biased results if the human workers are not sufficiently motivated to produce good, thoughtful answers.

In principle, the quality of a worker’s answers can be checked and rejected if they are incomplete or poor, in which 
case the worker is not paid for the effort and is stigmatized within the accounting system of Amazon Mechanical Turk. In 
practice, however, it would be quite difficult to check the responses, especially because we are interested in the variation 
in responses to questions that have no clear answers. Although the hourly rates and the payments they receive are pitifully 
small, there may be a tendency among workers to work fast rather than carefully, in order to maximize their incomes. How 
can we be sure that they are not providing slapdash responses that do not reflect what they actually believe about the 
hedges under study? How can we prevent workers from gaming our system and not giving us their considered responses? 
Interestingly, the best strategy may be to turn our system into a game.

An alternative strategy to collect more realistic information more easily uses ludic elicitation based on Luis von Ahn’s 
idea of internet games to harvest human intelligence [38] in which, as a part of on-line game play, humans make decisions 
that reveal interpretations and preferences by their decisions. Artfully designed games can elicit information as a side-effect 
of play so that the elicitation process is enjoyable to participants who will thus play longer and share more of their in-
telligence. This approach parasitizes human play, but it has relatively few moral or ethical problems since information is 
unlike resources that can only be shared in a zero-sum way. Sharing information does not diminish one’s own supply of 
information. Although this process is a bit different from the normal approach of directly asking questions of human in-
formants, scientific expertise about the design of questionnaires and experiments in general should nevertheless help us to 
avoid some pitfalls, misfires, and ambiguities in the results.

Game play is typically composed of three broad phases: a pre-ludic learning phase in which the participant is discovering 
the rules of play and coming to understand strategies to achieve high scores, a ludic phase in which the player actively plays 
the game because of its intrinsic interest and challenge, and a post-ludic phase in which a player either no longer plays the 
game at all or plays in a teasing or meta-play way that flaunts or ignores the game’s prescribed rules and goals. Clearly, only 
the middle ludic phase is generally useful for information collection since players’ responses are trustworthy reflections of 
their beliefs only in this phase. This means that attention must be devoted to discerning which phase each player is in.

We have implemented multiple games for Facebook to improve our assessments of the quantitative meanings of English-
language approximators, and also to assess whether the linguistic encodings are effective tools for risk communication. The 
point is to confirm that the approximator interpretations produce inputs consistent with what was intended by users, and 
also that uncertainty projection routines produce computed answers that are justifiable with those inputs, or, if they are 
not, to correct the scheme and routines to improve the consistency.
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Appendix A

Below is the Python code used to generate reasonable alternative numbers for constructing experimental sentences. The 
function generateNumbers takes as its first argument a numeric value and, as its second argument, a string code indicating 
the type of the value (integer, decimal).

import random
def generateNumbers( num, mode ):

if mode == ’int’:
numLength = len(str(num))
numList = []
numList.append(str(num))
order = 0
digits = num
for i in range(numLength):

lastDigit = digits%10
order = lastDigit* 10**i + order
digits//= 10
if order != 0 and order != num:
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numList.append(str(num - order))
a1 = num - order + random.choice ([1,2,3,4,6,7,8,9])*10**i
if a1 > 0:

numList.append(str(a1))
b1 = num - order + 5*10**i
if b1 > 0:

numList.append(str(b1))
return sorted(list(set(numList)), key = float)

elif mode == ’dec’:
numLength = len(str(num)) - 1
factor = 1
for i in range(numLength):

num*= 10
factor*=10

numList=[]
numList.append(str(num/factor))
order = 0
digits = num
for i in range(numLength):

lastDigit = digits%10
order = lastDigit*10**i+order
digits //= 10
if order! = 0 and order != num:

numList.append(str((num - order)/factor))
#numList.append(str(num - order + 10**(i + 1)))

a1 = num - order + random.choice([1,2,3,4,6,7,8,9])*10**i
a1/= factor
if a1 > 0:

numList.append(str(a1))
b1 = num - order + 5*10**i
b1/= factor
if b1 > 0:

numList.append(str(b1))
return sorted(list(set(numList)),key = float)
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